The Bourgain algebra of the disk algebra A(𝔻) and the algebra QA
Studia Mathematica (1995)
- Volume: 113, Issue: 3, page 211-221
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topCima, Joseph, and Mortini, Raymond. "The Bourgain algebra of the disk algebra A(𝔻) and the algebra QA." Studia Mathematica 113.3 (1995): 211-221. <http://eudml.org/doc/216171>.
@article{Cima1995,
abstract = {It is shown that the Bourgain algebra $A()_b$ of the disk algebra A() with respect to $H^\{∞\}()$ is the algebra generated by the Blaschke products having only a finite number of singularities. It is also proved that, with respect to $H^\{∞\}()$, the algebra QA of bounded analytic functions of vanishing mean oscillation is invariant under the Bourgain map as is $A()_b$.},
author = {Cima, Joseph, Mortini, Raymond},
journal = {Studia Mathematica},
keywords = {Bourgain algebra; disk algebra; algebra generated by the Blaschke products having only a finite number of singularities},
language = {eng},
number = {3},
pages = {211-221},
title = {The Bourgain algebra of the disk algebra A(𝔻) and the algebra QA},
url = {http://eudml.org/doc/216171},
volume = {113},
year = {1995},
}
TY - JOUR
AU - Cima, Joseph
AU - Mortini, Raymond
TI - The Bourgain algebra of the disk algebra A(𝔻) and the algebra QA
JO - Studia Mathematica
PY - 1995
VL - 113
IS - 3
SP - 211
EP - 221
AB - It is shown that the Bourgain algebra $A()_b$ of the disk algebra A() with respect to $H^{∞}()$ is the algebra generated by the Blaschke products having only a finite number of singularities. It is also proved that, with respect to $H^{∞}()$, the algebra QA of bounded analytic functions of vanishing mean oscillation is invariant under the Bourgain map as is $A()_b$.
LA - eng
KW - Bourgain algebra; disk algebra; algebra generated by the Blaschke products having only a finite number of singularities
UR - http://eudml.org/doc/216171
ER -
References
top- [1] S.-Y. Chang and D. E. Marshall, Some algebras of bounded analytic functions containing the disc algebra, in: Lecture Notes in Math. 604, Springer, 1977, 12-20.
- [2] J. Cima, S. Janson and K. Yale, Completely continuous Hankel operators on and Bourgain algebras, Proc. Amer. Math. Soc. 105 (1989), 121-125.
- [3] J. Cima, K. Stroethoff and K. Yale, Bourgain algebras on the unit disk, Pacific J. Math. 160 (1993), 27-41. Zbl0816.46046
- [4] J. Cima, S. Janson and K. Yale, The Bourgain algebra of the disk algebra, Proc. Roy. Irish Acad. 94A (1994), 19-23. Zbl0804.46065
- [5] J. Cima and R. Timoney, The Dunford-Pettis property for certain planar uniform algebras, Michigan Math. J. 34 (1987), 99-104. Zbl0617.46058
- [6] K. F. Clancey and J. A. Gosselin, The local theory of Toeplitz operators, Illinois J. Math. 22 (1978), 449-458. Zbl0384.47022
- [7] A. Davie, T. W. Gamelin and J. B. Garnett, Distance estimates and pointwise bounded density, Trans. Amer. Math. Soc. 175 (1973), 37-68. Zbl0263.30033
- [8] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. Zbl0469.30024
- [9] I. M. Gelfand, D. A. Raikov and G. E. Shilov, Kommutative normierte Algebren, Deutscher Verlag Wiss., Berlin, 1964.
- [10] P. Gorkin and K. Izuchi, Bourgain algebras on the maximal ideal space of , Rocky Mountain J. Math., to appear. Zbl0843.46037
- [11] P. Gorkin, K. Izuchi and R. Mortini, Bourgain algebras of Douglas algebras, Canad. J. Math. 44 (1992), 797-804. Zbl0763.46046
- [12] P. Helmer and J. Pym, Approximation by functions with finitely many discontinuities, Quart. J. Math. Oxford 43 (1992), 223-226. Zbl0766.54011
- [13] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, N.J., 1962. Zbl0117.34001
- [14] K. Izuchi, Bourgain algebras of the disk, polydisk, and ball algebras, Duke Math. J. 66 (1992), 503-520. Zbl0806.46061
- [15] K. Izuchi, K. Stroethoff and K. Yale, Bourgain algebras of spaces of harmonic functions, Michigan Math. J. 41 (1994), 309-321. Zbl0916.46043
- [16] D. E. Marshall and K. Stephenson, Inner divisors and composition operators, J. Funct. Anal. 46 (1982), 131-148. Zbl0485.30037
- [17] R. Mortini and M. von Renteln, Strong extreme points and ideals in uniform algebras, Arch. Math. (Basel) 52 (1989), 465-470. Zbl0639.46046
- [18] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. Zbl0319.42006
- [19] C. Sundberg and T. H. Wolff, Interpolating sequences for , ibid. 276 (1983), 551-581. Zbl0536.30025
- [20] T. H. Wolff, Some theorems of vanishing mean oscillation, thesis, Univ. of California, Berkeley, 1979.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.