L p weighted inequalities for the dyadic square function

Akihito Uchiyama

Studia Mathematica (1995)

  • Volume: 115, Issue: 2, page 135-149
  • ISSN: 0039-3223

Abstract

top
We prove that ʃ ( S d f ) p V d x C p , n ʃ | f | p M d ( [ p / 2 ] + 2 ) V d x , where S d is the dyadic square function, M d ( k ) is the k-fold application of the dyadic Hardy-Littlewood maximal function and p > 2.

How to cite

top

Uchiyama, Akihito. "$L^p$ weighted inequalities for the dyadic square function." Studia Mathematica 115.2 (1995): 135-149. <http://eudml.org/doc/216204>.

@article{Uchiyama1995,
abstract = {We prove that $ʃ(S_df)^pVdx ≤ C_\{p,n\}ʃ |f|^p M_d^\{([p/2]+2)\}Vdx$, where $S_d$ is the dyadic square function, $M_d^\{(k)\}$ is the k-fold application of the dyadic Hardy-Littlewood maximal function and p > 2.},
author = {Uchiyama, Akihito},
journal = {Studia Mathematica},
keywords = {dyadic square function; dyadic maximal function; weighted inequality; BMO},
language = {eng},
number = {2},
pages = {135-149},
title = {$L^p$ weighted inequalities for the dyadic square function},
url = {http://eudml.org/doc/216204},
volume = {115},
year = {1995},
}

TY - JOUR
AU - Uchiyama, Akihito
TI - $L^p$ weighted inequalities for the dyadic square function
JO - Studia Mathematica
PY - 1995
VL - 115
IS - 2
SP - 135
EP - 149
AB - We prove that $ʃ(S_df)^pVdx ≤ C_{p,n}ʃ |f|^p M_d^{([p/2]+2)}Vdx$, where $S_d$ is the dyadic square function, $M_d^{(k)}$ is the k-fold application of the dyadic Hardy-Littlewood maximal function and p > 2.
LA - eng
KW - dyadic square function; dyadic maximal function; weighted inequality; BMO
UR - http://eudml.org/doc/216204
ER -

References

top
  1. [CWW] S. Y. A. Chang, J. M. Wilson and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), 217-246. Zbl0575.42025
  2. [CW] S. Chanillo and R. L. Wheeden, Some weighted norm inequalities for the area integral, Indiana Univ. Math. J. 36 (1987), 277-294. Zbl0598.34019
  3. [C] R. R. Coifman, A real-variable characterization of H p , Studia Math. 51 (1974), 269-274. Zbl0289.46037
  4. [D] W. R. Derrick, Open problems in singular integral theory, J. Integral Equations Appl. 5 (1993), 23-28. Zbl0773.42011
  5. [Gn] J. B. Garnett, Bounded Analytic Functions, Pure and Appl. Math. 96, Academic Press, 1981. 
  6. [Gs] A. M. Garsia, Martingale Inequalities, Seminar Notes on Recent Progress, Benjamin, 1973. 
  7. [P] C. Pérez, Weighted norm inequalities for singular integral operators, J. London Math. Soc. (2) 49 (1994), 296-308. Zbl0797.42010
  8. [S1] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. 
  9. [S2] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. 
  10. [W1] J. M. Wilson, Weighted inequalities for the dyadic square functions without dyadic A , Duke Math. J. 55 (1987), 19-49. 
  11. [W2] J. M. Wilson, A sharp inequality for the square function, ibid., 879-887. Zbl0639.42017
  12. [W3] J. M. Wilson, L p weighted norm inequalities for the square function 0< p< 2, Illinois J. Math. 33 (1989), 361-366. 
  13. [W4] J. M. Wilson, Weighted inequalities for the square function, in: Contemp. Math. 91, Amer. Math. Soc., 1989, 299-305. 
  14. [W5] J. M. Wilson, Weighted norm inequalities for the continuous square function, Trans. Amer. Math. Soc. 314 (1989), 661-692. Zbl0689.42016
  15. [W6] J. M. Wilson, Chanillo-Wheeden inequalities for 0< p≤ 1, J. London Math. Soc. (2) 41 (1990), 283-294. Zbl0712.42032
  16. [W7] J. M. Wilson, Some two-parameter square function inequalities, Indiana Univ. Math. J. 40 (1991), 419-442. Zbl0734.42007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.