Nonatomic Lipschitz spaces

Nik Weaver

Studia Mathematica (1995)

  • Volume: 115, Issue: 3, page 277-289
  • ISSN: 0039-3223

Abstract

top
We abstractly characterize Lipschitz spaces in terms of having a lattice-complete unit ball and a separating family of pure normal states. We then formulate a notion of "measurable metric space" and characterize the corresponding Lipschitz spaces in terms of having a lattice complete unit ball and a separating family of normal states.

How to cite

top

Weaver, Nik. "Nonatomic Lipschitz spaces." Studia Mathematica 115.3 (1995): 277-289. <http://eudml.org/doc/216213>.

@article{Weaver1995,
abstract = {We abstractly characterize Lipschitz spaces in terms of having a lattice-complete unit ball and a separating family of pure normal states. We then formulate a notion of "measurable metric space" and characterize the corresponding Lipschitz spaces in terms of having a lattice complete unit ball and a separating family of normal states.},
author = {Weaver, Nik},
journal = {Studia Mathematica},
keywords = {Lipschitz spaces; lattice-complete unit ball; separating family of pure normal states},
language = {eng},
number = {3},
pages = {277-289},
title = {Nonatomic Lipschitz spaces},
url = {http://eudml.org/doc/216213},
volume = {115},
year = {1995},
}

TY - JOUR
AU - Weaver, Nik
TI - Nonatomic Lipschitz spaces
JO - Studia Mathematica
PY - 1995
VL - 115
IS - 3
SP - 277
EP - 289
AB - We abstractly characterize Lipschitz spaces in terms of having a lattice-complete unit ball and a separating family of pure normal states. We then formulate a notion of "measurable metric space" and characterize the corresponding Lipschitz spaces in terms of having a lattice complete unit ball and a separating family of normal states.
LA - eng
KW - Lipschitz spaces; lattice-complete unit ball; separating family of pure normal states
UR - http://eudml.org/doc/216213
ER -

References

top
  1. [1] W. G. Bade, P. C. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (1987), 359-377. Zbl0634.46042
  2. [2] A. Connes, Compact metric spaces, Fredholm modules, and hyperfiniteness, Ergodic Theory Dynam. Systems 9 (1989), 207-220. Zbl0718.46051
  3. [3] K. de Leeuw, Banach spaces of Lipschitz functions, Studia Math. 21 (1961), 55-66. Zbl0101.08901
  4. [4] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, 1957. Zbl0088.32304
  5. [5] J. A. Johnson, Banach spaces of Lipschitz functions and vector-valued Lipschitz functions, Trans. Amer. Math. Soc. 148 (1970), 147-169. Zbl0194.43603
  6. [6] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. I, Academic Press, 1983. Zbl0518.46046
  7. [7] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces, Vol. I, North-Holland, 1971. Zbl0231.46014
  8. [8] D. R. Sherbert, Banach algebras of Lipschitz functions, Pacific J. Math. 13 (1963), 1387-1399. Zbl0121.10203
  9. [9] D. R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240-272. Zbl0121.10204
  10. [10] L. Waelbroeck, Closed ideals of Lipschitz functions, in: Function Algebras, F. T. Birtel (ed.), Scott, Foresman and Co., 1966, 322-325. 
  11. [11] N. Weaver, Lattices of Lipschitz functions, Pacific J. Math. 164 (1994), 179-193. Zbl0797.46007
  12. [12] N. Weaver, Isometries of noncompact Lipschitz spaces, Canad. Math. Bull., to appear. Zbl0831.46007
  13. [13] N. Weaver, Order-completeness in Lipschitz algebras, J. Funct. Anal., to appear. Zbl0922.46022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.