Stabilité du spectre ponctuel d'opérateurs de Toeplitz généralisés

Lioudmila Nikolskaia

Studia Mathematica (1995)

  • Volume: 116, Issue: 1, page 1-22
  • ISSN: 0039-3223

Abstract

top
A general scheme based on a commutation relation is proposed to give rise to a definition of generalized Toeplitz operators on a Banach space. Under suitable conditions the existence of a symbol is proved and its continuation to algebras generated by generalized Toeplitz operators is constructed. A stability theorem for the point spectrum of an operator from generalized Toeplitz algebras is established; as examples one considers the standard and operator valued Toeplitz operators on weighted Hardy spaces and on spaces of functions (distributions) with weighted l p Fourier transforms.

How to cite

top

Nikolskaia, Lioudmila. "Stabilité du spectre ponctuel d'opérateurs de Toeplitz généralisés." Studia Mathematica 116.1 (1995): 1-22. <http://eudml.org/doc/216216>.

@article{Nikolskaia1995,
author = {Nikolskaia, Lioudmila},
journal = {Studia Mathematica},
keywords = {Toeplitz and Wiener-Hopf operators; multipliers; quasi-continuous functions; Wiener-Hopf operators; commutation relation; generalized Toeplitz operators on a Banach space; stability theorem for the point spectrum; Toeplitz operators on weighted Hardy spaces; spaces of functions (distributions) with weighted Fourier transforms},
language = {fre},
number = {1},
pages = {1-22},
title = {Stabilité du spectre ponctuel d'opérateurs de Toeplitz généralisés},
url = {http://eudml.org/doc/216216},
volume = {116},
year = {1995},
}

TY - JOUR
AU - Nikolskaia, Lioudmila
TI - Stabilité du spectre ponctuel d'opérateurs de Toeplitz généralisés
JO - Studia Mathematica
PY - 1995
VL - 116
IS - 1
SP - 1
EP - 22
LA - fre
KW - Toeplitz and Wiener-Hopf operators; multipliers; quasi-continuous functions; Wiener-Hopf operators; commutation relation; generalized Toeplitz operators on a Banach space; stability theorem for the point spectrum; Toeplitz operators on weighted Hardy spaces; spaces of functions (distributions) with weighted Fourier transforms
UR - http://eudml.org/doc/216216
ER -

References

top
  1. [1] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, 1976. Zbl0344.46071
  2. [2] A. Bottcher and B. Silbermann, Analysis of Toeplitz Operators, Akademie-Verlag, Berlin, 1989. Zbl0689.45009
  3. [3] A. Devinatz and M. Shinbrot, General Wiener-Hopf operators, Trans. Amer. Math. Soc. 145 (1969), 467-494. Zbl0193.10901
  4. [4] R. Douglas, Banach Algebra Techniques in the Theory of Toeplitz Operators, CBMS Regional Conf. Ser. in Math. 15, Amer. Math. Soc., 1973. Zbl0252.47025
  5. [5] R. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972. Zbl0247.47001
  6. [6] D. A. Herrero, T. J. Taylor and L. V. Wang, Variations of the point spectrum under compact perturbations, dans : Oper. Theory Adv. Appl. 32, Birkhäuser, 1988, 113-157. 
  7. [7] T. Kato, Perturbation Theory for Linear Operators, Springer, 1976. Zbl0342.47009
  8. [8] L. N. Nikol'skaya, Criteria for stability of the point spectrum under completely continuous perturbations, Math. Notes 19 (1975), 946-949. 
  9. [9] L. N. Nikol'skaya, Stability of the eigenvalues of certain types of singular integral equations, J. Soviet Math. 32 (1986), 513-519. 
  10. [10] L. N. Nikol'skaya, Stability of characteristic values of singular integral equations, ibid. 50 (1990), 2027-2031. 
  11. [11] N. Nikolski, Treatise on the Shift Operator, Springer, 1986. 
  12. [12] L. Page, Bounded and compact vectorial Hankel operators, Trans. Amer. Math. Soc. 150 (1970), 529-539. Zbl0203.45701
  13. [13] R. Rochberg, Toeplitz operators on weighted H p spaces, Indiana Univ. Math. J. 26 (1977), 291-298. Zbl0373.47018
  14. [14] M. Rosenblum, Vectorial Toeplitz operators and the Fejér-Riesz Theorem, J. Math. Anal. Appl. 23 (1968), 139-147. Zbl0159.43102
  15. [15] I. Singer, Theory of Bases, Vol. 1, Springer, 1975. 
  16. [16] S. Treil, Geometric aspects of the spectral function theory, dans : Oper. Theory Adv. Appl. 42, Birkhäuser, 1989, 209-280. 
  17. [17] I. E. Verbitski, Sur les multiplicateurs dans les espaces l p pondérés, dans : Propriétés spectrales des opérateurs, Mat. Issled. 45, Shtiintsa, Kishinev, 1977 (en russe). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.