On the maximal Fejér operator for double Fourier series of functions in Hardy spaces
Studia Mathematica (1995)
- Volume: 116, Issue: 1, page 89-100
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988. Zbl0647.46057
- [2] R. Fefferman, Some recent developments in Fourier analysis and theory on product domains, II, in: Function Spaces and Applications, Proc. Conf. Lund 1986, Lecture Notes in Math. 1302, Springer, Berlin, 1988, 44-51.
- [3] A. M. Garsia, Martingale Inequalities, Benjamin, New York, 1973.
- [4] D. V. Giang and F. Móricz, Hardy spaces on the plane and double Fourier transforms, J. Fourier Anal. Appl., submitted. Zbl1055.42503
- [5] B. Jessen, J. Marcinkiewicz and A. Zygmund, Note on the differentiability of multiple integrals, Fund. Math. 25 (1935), 217-234. Zbl61.0255.01
- [6] J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, ibid. 32 (1939), 112-132. Zbl65.0266.01
- [7] F. Móricz, The maximal Fejér operator is bounded from into , Analysis, submitted. Zbl0927.47022
- [8] F. Móricz, F. Schipp and W. R. Wade, Cesàro summability of double Walsh-Fourier series, Trans. Amer. Math. Soc. 329 (1992), 131-140. Zbl0795.42016
- [9] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1959. Zbl0085.05601