On the maximal Fejér operator for double Fourier series of functions in Hardy spaces

Ferenc Móricz

Studia Mathematica (1995)

  • Volume: 116, Issue: 1, page 89-100
  • ISSN: 0039-3223

Abstract

top
We consider the Fejér (or first arithmetic) means of double Fourier series of functions belonging to one of the Hardy spaces H ( 1 , 0 ) ( 2 ) , H ( 0 , 1 ) ( 2 ) , or H ( 1 , 1 ) ( 2 ) . We prove that the maximal Fejér operator is bounded from H ( 1 , 0 ) ( 2 ) or H ( 0 , 1 ) ( 2 ) into weak- L 1 ( 2 ) , and also bounded from H ( 1 , 1 ) ( 2 ) into L 1 ( 2 ) . These results extend those by Jessen, Marcinkiewicz, and Zygmund, which involve the function spaces L 1 l o g + L ( 2 ) , L 1 ( l o g + L ) 2 ( 2 ) , and L μ ( 2 ) with 0 < μ < 1, respectively. We establish analogous results for the maximal conjugate Fejér operators. On closing, we formulate two conjectures.

How to cite

top

Móricz, Ferenc. "On the maximal Fejér operator for double Fourier series of functions in Hardy spaces." Studia Mathematica 116.1 (1995): 89-100. <http://eudml.org/doc/216222>.

@article{Móricz1995,
abstract = {We consider the Fejér (or first arithmetic) means of double Fourier series of functions belonging to one of the Hardy spaces $H^\{(1,0)\}(^2)$, $H^\{(0,1)\}(^2)$, or $H^\{(1,1)\}(^2)$. We prove that the maximal Fejér operator is bounded from $H^\{(1,0)\}(^2)$ or $H^\{(0,1)\}(^2)$ into weak-$L^1(^2)$, and also bounded from $H^\{(1,1)\}(^2)$ into $L^1(^2)$. These results extend those by Jessen, Marcinkiewicz, and Zygmund, which involve the function spaces $L^\{1\} log^\{+\} L(^2)$, $L^1(log^\{+\}L)^2(^2)$, and $L^μ(^2)$ with 0 < μ < 1, respectively. We establish analogous results for the maximal conjugate Fejér operators. On closing, we formulate two conjectures.},
author = {Móricz, Ferenc},
journal = {Studia Mathematica},
keywords = {Fejér (or first arithmetic) means; double Fourier series; Hardy spaces; maximal Fejér operator; maximal conjugate Fejér operators},
language = {eng},
number = {1},
pages = {89-100},
title = {On the maximal Fejér operator for double Fourier series of functions in Hardy spaces},
url = {http://eudml.org/doc/216222},
volume = {116},
year = {1995},
}

TY - JOUR
AU - Móricz, Ferenc
TI - On the maximal Fejér operator for double Fourier series of functions in Hardy spaces
JO - Studia Mathematica
PY - 1995
VL - 116
IS - 1
SP - 89
EP - 100
AB - We consider the Fejér (or first arithmetic) means of double Fourier series of functions belonging to one of the Hardy spaces $H^{(1,0)}(^2)$, $H^{(0,1)}(^2)$, or $H^{(1,1)}(^2)$. We prove that the maximal Fejér operator is bounded from $H^{(1,0)}(^2)$ or $H^{(0,1)}(^2)$ into weak-$L^1(^2)$, and also bounded from $H^{(1,1)}(^2)$ into $L^1(^2)$. These results extend those by Jessen, Marcinkiewicz, and Zygmund, which involve the function spaces $L^{1} log^{+} L(^2)$, $L^1(log^{+}L)^2(^2)$, and $L^μ(^2)$ with 0 < μ < 1, respectively. We establish analogous results for the maximal conjugate Fejér operators. On closing, we formulate two conjectures.
LA - eng
KW - Fejér (or first arithmetic) means; double Fourier series; Hardy spaces; maximal Fejér operator; maximal conjugate Fejér operators
UR - http://eudml.org/doc/216222
ER -

References

top
  1. [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988. Zbl0647.46057
  2. [2] R. Fefferman, Some recent developments in Fourier analysis and H p theory on product domains, II, in: Function Spaces and Applications, Proc. Conf. Lund 1986, Lecture Notes in Math. 1302, Springer, Berlin, 1988, 44-51. 
  3. [3] A. M. Garsia, Martingale Inequalities, Benjamin, New York, 1973. 
  4. [4] D. V. Giang and F. Móricz, Hardy spaces on the plane and double Fourier transforms, J. Fourier Anal. Appl., submitted. Zbl1055.42503
  5. [5] B. Jessen, J. Marcinkiewicz and A. Zygmund, Note on the differentiability of multiple integrals, Fund. Math. 25 (1935), 217-234. Zbl61.0255.01
  6. [6] J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, ibid. 32 (1939), 112-132. Zbl65.0266.01
  7. [7] F. Móricz, The maximal Fejér operator is bounded from H 1 ( ) into L 1 ( ) , Analysis, submitted. Zbl0927.47022
  8. [8] F. Móricz, F. Schipp and W. R. Wade, Cesàro summability of double Walsh-Fourier series, Trans. Amer. Math. Soc. 329 (1992), 131-140. Zbl0795.42016
  9. [9] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.