The basic sequence problem

N. Kalton

Studia Mathematica (1995)

  • Volume: 116, Issue: 2, page 167-187
  • ISSN: 0039-3223

Abstract

top
We construct a quasi-Banach space X which contains no basic sequence.

How to cite

top

Kalton, N.. "The basic sequence problem." Studia Mathematica 116.2 (1995): 167-187. <http://eudml.org/doc/216225>.

@article{Kalton1995,
abstract = {We construct a quasi-Banach space X which contains no basic sequence.},
author = {Kalton, N.},
journal = {Studia Mathematica},
keywords = {basic sequence; Schauder basis; quasi-Banach and Fréchet spaces},
language = {eng},
number = {2},
pages = {167-187},
title = {The basic sequence problem},
url = {http://eudml.org/doc/216225},
volume = {116},
year = {1995},
}

TY - JOUR
AU - Kalton, N.
TI - The basic sequence problem
JO - Studia Mathematica
PY - 1995
VL - 116
IS - 2
SP - 167
EP - 187
AB - We construct a quasi-Banach space X which contains no basic sequence.
LA - eng
KW - basic sequence; Schauder basis; quasi-Banach and Fréchet spaces
UR - http://eudml.org/doc/216225
ER -

References

top
  1. [1] S. Banach, Théorie des opérations linéaires, reprint of the original 1932 edition, Chelsea, New York, 1978. 
  2. [2] J. Bastero, q -subspaces of stable p-Banach spaces, Arch. Math. (Basel) 40 (1983), 538-544. Zbl0503.46015
  3. [3] L. Drewnowski, On minimally subspace-comparable F-spaces, J. Funct. Anal. 26 (1977), 315-332. Zbl0366.46012
  4. [4] L. Drewnowski, Quasi-complements in F-spaces, Studia Math. 77 (1984), 373-391. Zbl0552.46003
  5. [5] P. L. Duren, B. W. Romberg and A. L. Shields, Linear functionals on H p -spaces when 0 < p < 1, J. Reine Angew. Math. 238 (1969), 32-60. 
  6. [6] T. A. Gillespie, Factorisation in Banach function spaces, Indag. Math. 43 (1981), 287-300. Zbl0475.46028
  7. [7] W. T. Gowers, A solution to Banach's hyperplane problem, Bull. London Math. Soc. 26 (1994), 532-540. Zbl0838.46011
  8. [8] W. T. Gowers, A new dichotomy for Banach spaces, preprint. 
  9. [9] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874. Zbl0827.46008
  10. [10] J. Kąkol and P. Sorjonen, Basic sequences and the Hahn-Banach extension property, Acta Sci. Math. (Szeged) 59 (1994), 161-171. Zbl0818.46006
  11. [11] N. J. Kalton, Basic sequences in F-spaces and their applications, Proc. Edinburgh Math. Soc. 19 (1974), 151-167. Zbl0296.46010
  12. [12] N. J. Kalton, Compact and strictly singular operators on Orlicz spaces, Israel J. Math. 26 (1977), 126-136. Zbl0348.47016
  13. [13] N. J. Kalton, The three space problem for locally bounded F-spaces, Compositio Math. 37 (1978), 243-276. Zbl0395.46003
  14. [14] N. J. Kalton, The atomic space problem and related questions for F-spaces, in: Proc. Orlicz Memorial Conf., Univ. of Mississippi, Oxford, Mississippi, 1991. Zbl0754.46001
  15. [15] N. J. Kalton, Differentials of complex interpolation processes for Köthe function spaces, Trans. Amer. Math. Soc. 333 (1992), 479-529 . Zbl0776.46033
  16. [16] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-Space Sampler, London Math. Soc. Lecture Note Ser. 89, Cambridge Univ. Press, Cambridge, 1984. 
  17. [17] N. J. Kalton and J. H. Shapiro, Bases and basic sequences in F-spaces, Studia Math. 56 (1976), 47-61. Zbl0334.46008
  18. [18] V. L. Klee, Exotic topologies for linear spaces, in: Proc. Sympos. on General Topology and its Relations to Modern Analysis and Algebra, Academic Press, 1962, 238-249. Zbl0111.10701
  19. [19] G. Ya. Lozanovskiĭ, On some Banach lattices, Siberian Math. J. 10 (1969), 419-430. 
  20. [20] E. Odell and T. Schlumprecht, The distortion of Hilbert space, Geom. Funct. Anal. 3 (1993), 201-217. Zbl0817.46023
  21. [21] E. Odell and T. Schlumprecht, The distortion problem, Acta Math. 173 (1994), 259-283. Zbl0828.46005
  22. [22] N. T. Peck, Twisted sums and a problem of Klee, Israel J. Math. 81 (1993), 357-368. Zbl0799.46085
  23. [23] N. T. Peck and H. Porta, Linear topologies which are suprema of exotic topologies, Studia Math. 47 (1973), 63-73. Zbl0255.46009
  24. [24] M. L. Reese, Almost-atomic spaces, Illinois J. Math. 36 (1992), 316-324. Zbl0789.46005
  25. [25] M. Ribe, Necessary convexity conditions for the Hahn-Banach theorem in metrizable spaces, Pacific J. Math. 44 (1973), 715-732. Zbl0258.46004
  26. [26] M. Ribe, Examples for the nonlocally convex three space problem, Proc. Amer. Math. Soc. 73 (1979), 351-355. Zbl0397.46002
  27. [27] J. W. Roberts, A nonlocally convex F-space with the Hahn-Banach approximation property, in: Lecture Notes in Math. 604, Springer, 1977, 76-81. 
  28. [28] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, 1972. 
  29. [29] J. H. Shapiro, Extension of linear functionals on F-spaces with bases, Duke Math. J. 37 (1970), 639-645. Zbl0205.41002
  30. [30] S. C. Tam, The basic sequence problem for quasi-normed spaces, Arch. Math. (Basel) 62 (1994), 69-72. Zbl0821.46003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.