RNP and KMP are equivalent for some Banach spaces with shrinking basis

Ginés López; Juan Mena

Studia Mathematica (1996)

  • Volume: 118, Issue: 1, page 11-17
  • ISSN: 0039-3223

Abstract

top
We get a characterization of PCP in Banach spaces with shrinking basis. Also, we prove that the Radon-Nikodym and Krein-Milman properties are equivalent for closed, convex and bounded subsets of some Banach spaces with shrinking basis.

How to cite

top

López, Ginés, and Mena, Juan. "RNP and KMP are equivalent for some Banach spaces with shrinking basis." Studia Mathematica 118.1 (1996): 11-17. <http://eudml.org/doc/216258>.

@article{López1996,
abstract = {We get a characterization of PCP in Banach spaces with shrinking basis. Also, we prove that the Radon-Nikodym and Krein-Milman properties are equivalent for closed, convex and bounded subsets of some Banach spaces with shrinking basis.},
author = {López, Ginés, Mena, Juan},
journal = {Studia Mathematica},
keywords = {Banach spaces with shrinking basis; Radon-Nikodym and Krein-Milman properties are equivalent},
language = {eng},
number = {1},
pages = {11-17},
title = {RNP and KMP are equivalent for some Banach spaces with shrinking basis},
url = {http://eudml.org/doc/216258},
volume = {118},
year = {1996},
}

TY - JOUR
AU - López, Ginés
AU - Mena, Juan
TI - RNP and KMP are equivalent for some Banach spaces with shrinking basis
JO - Studia Mathematica
PY - 1996
VL - 118
IS - 1
SP - 11
EP - 17
AB - We get a characterization of PCP in Banach spaces with shrinking basis. Also, we prove that the Radon-Nikodym and Krein-Milman properties are equivalent for closed, convex and bounded subsets of some Banach spaces with shrinking basis.
LA - eng
KW - Banach spaces with shrinking basis; Radon-Nikodym and Krein-Milman properties are equivalent
UR - http://eudml.org/doc/216258
ER -

References

top
  1. [1] S. Argyros, E. Odell and H. Rosenthal, On certain convex subsets of c 0 , in: Lecture Notes in Math. 1332, Springer, Berlin, 1988, 80-111. 
  2. [2] J. Bourgain, La propriété de Radon-Nikodym, Publ. Math. Univ. Pierre et Marie Curie 36, 1979. 
  3. [3] J. Bourgain and H. Rosenthal, Geometrical implications of certain finite-dimensional decompositions, Bull. Soc. Math. Belg. Sér. B 32 (1980), 57-82. Zbl0463.46011
  4. [4] R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Math. 993, Springer, 1980. Zbl0512.46017
  5. [5] J. Diestel and J. J. Uhl., Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977. 
  6. [6] D. van Dulst, Reflexive and Superreflexive Banach Spaces, Math. Centre Tracts 102, Math. Centrum, Amsterdam, 1978. Zbl0412.46006
  7. [7] D. van Dulst, Characterizations of Banach Spaces not Containing l 1 , CWI Tract 59, Stichting Math. Centrum, Amsterdam, 1989. 
  8. [8] R. C. James, Some interesting Banach spaces, Rocky Mountain J. Math. 23 (1993), 911-937. Zbl0797.46010
  9. [9] J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain l 1 and whose duals are non-separable, Studia Math. 54 (1975), 81-105. Zbl0324.46017
  10. [10] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Ergeb. Math. Grenzgeb. 92, Springer, 1977. Zbl0362.46013
  11. [11] R. R. Phelps, Dentability and extreme points in Banach spaces, J. Funct. Anal. 17 (1974), 78-90. Zbl0287.46026
  12. [12] W. Schachermayer, The Radon-Nikodym property and the Krein-Milman property are equivalent for strongly regular sets, Trans. Amer. Math. Soc. 303 (1987), 673-687. Zbl0633.46023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.