Duality on vector-valued weighted harmonic Bergman spaces
Studia Mathematica (1996)
- Volume: 118, Issue: 1, page 37-47
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S. Bell, A duality theorem for harmonic functions, Michigan Math. J. 29 (1982), 123-128. Zbl0482.31004
- [2] C. V. Coffman and J. Cohen, The duals of harmonic Bergman spaces, Proc. Amer. Math. Soc. 110 (1990), 697-704. Zbl0717.31001
- [3] R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in , Astérisque 77 (1980), 11-66. Zbl0472.46040
- [4] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
- [5] N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
- [6] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Notas Mat. 116, North-Holland, Amsterdam, 1985.
- [7] E. Ligocka, The Hölder duality for harmonic functions, Studia Math. 84 (1986), 269-277. Zbl0651.46035
- [8] E. Ligocka, Estimates in Sobolev norms for harmonic and holomorphic functions and interpolation between Sobolev and Hölder spaces of harmonic functions, Studia Math. 86 (1987), 255-271. Zbl0642.46035
- [9] E. Ligocka, On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in , ibid. 87 (1987), 23-32. Zbl0658.31006
- [10] C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, New York, 1966. Zbl0142.38701
- [11] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971. Zbl0232.42007