Comparing gaussian and Rademacher cotype for operators on the space of continuous functions
Studia Mathematica (1996)
- Volume: 118, Issue: 2, page 101-115
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topJunge, Marius. "Comparing gaussian and Rademacher cotype for operators on the space of continuous functions." Studia Mathematica 118.2 (1996): 101-115. <http://eudml.org/doc/216266>.
@article{Junge1996,
abstract = {We prove an abstract comparison principle which translates gaussian cotype into Rademacher cotype conditions and vice versa. More precisely, let 2 < q < ∞ and T: C(K) → F a continuous linear operator. (1) T is of gaussian cotype q if and only if $(∑_k ((∥Tx_k∥_F)/(√log(k+1)))^q)^\{1/q\} ≤ c ∥ ∑_k ɛ_\{k\} x_\{k\} ∥_\{L_\{2\}(C(K))\}$, for all sequences $(x_k)_\{k∈ℕ\} ⊂ C(K)$ with $(∥Tx_k∥)_\{k=1\}^n$ decreasing. (2) T is of Rademacher cotype q if and only if $(∑_k (∥Tx_k∥_\{F\} √((log(k+1))^q) )^\{1/q\} ≤ c ∥∑_k g_\{k\}x_\{k\}∥_\{L_2(C(K))\}$, for all sequences $(x_k)_\{k∈ℕ\} ⊂ C(K)$ with $(∥Tx_k∥)_\{k=1\}^n$ decreasing. Our method allows a restriction to a fixed number of vectors and complements the corresponding results of Talagrand.},
author = {Junge, Marius},
journal = {Studia Mathematica},
keywords = {abstract comparison principle; Gaussian cotype; Rademacher cotype},
language = {eng},
number = {2},
pages = {101-115},
title = {Comparing gaussian and Rademacher cotype for operators on the space of continuous functions},
url = {http://eudml.org/doc/216266},
volume = {118},
year = {1996},
}
TY - JOUR
AU - Junge, Marius
TI - Comparing gaussian and Rademacher cotype for operators on the space of continuous functions
JO - Studia Mathematica
PY - 1996
VL - 118
IS - 2
SP - 101
EP - 115
AB - We prove an abstract comparison principle which translates gaussian cotype into Rademacher cotype conditions and vice versa. More precisely, let 2 < q < ∞ and T: C(K) → F a continuous linear operator. (1) T is of gaussian cotype q if and only if $(∑_k ((∥Tx_k∥_F)/(√log(k+1)))^q)^{1/q} ≤ c ∥ ∑_k ɛ_{k} x_{k} ∥_{L_{2}(C(K))}$, for all sequences $(x_k)_{k∈ℕ} ⊂ C(K)$ with $(∥Tx_k∥)_{k=1}^n$ decreasing. (2) T is of Rademacher cotype q if and only if $(∑_k (∥Tx_k∥_{F} √((log(k+1))^q) )^{1/q} ≤ c ∥∑_k g_{k}x_{k}∥_{L_2(C(K))}$, for all sequences $(x_k)_{k∈ℕ} ⊂ C(K)$ with $(∥Tx_k∥)_{k=1}^n$ decreasing. Our method allows a restriction to a fixed number of vectors and complements the corresponding results of Talagrand.
LA - eng
KW - abstract comparison principle; Gaussian cotype; Rademacher cotype
UR - http://eudml.org/doc/216266
ER -
References
top- [COB] F. Cobos, On the Lorentz-Marcinkiewicz operator ideal, Math. Nachr. 126 (1986), 281-300. Zbl0611.47036
- [DJ] M. Defant and M. Junge, On absolutely summing operators with application to the (p,q)-summing norm with few vectors, J. Funct. Anal. 103 (1992), 62-73. Zbl0749.47008
- [DJ1] M. Defant and M. Junge, Random variables in weak type p spaces, Arch. Math. (Basel) 58 (1992), 399-406. Zbl0764.46010
- [LET] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, 1991. Zbl0748.60004
- [LIP] W. Linde and A. Pietsch, Mappings of gaussian cylindrical measures in Banach spaces, Theory Probab. Appl. 19 (1974), 445-460. Zbl0312.60005
- [LTI] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977. Zbl0362.46013
- [LTII] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, 1979. Zbl0403.46022
- [MAS] V. Mascioni, On weak cotype and weak type in Banach spaces, Note Mat. 8 (1) (1988), 67-110. Zbl0818.46020
- [MAU] B. Maurey, Type et cotype dans les espaces munis d'une structure localement inconditionnelle, Sém. Maurey-Schwartz 73-74, École Polytechnique, exp. no. 24-25.
- [MSM] S. J. Montgomery-Smith, The Gaussian cotype of operators from C(K), Israel J. Math. 68 (1989), 123-128. Zbl0701.47006
- [PIE] A. Pietsch, Eigenvalues and s-Numbers of Operators, Cambridge Univ. Press, 1987.
- [TAL] M. Talagrand, Cotype of operators from C(K), Invent. Math. 107 (1992), 1-40. Zbl0788.47022
- [TA1] M. Talagrand, Regularity of Gaussian processes, Acta Math. 159 (1987), 99-149. Zbl0712.60044
- [TJM] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Longman, 1988.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.