Derivations on Jordan-Banach algebras

A. Villena

Studia Mathematica (1996)

  • Volume: 118, Issue: 3, page 205-229
  • ISSN: 0039-3223

Abstract

top
We establish that all derivations on a semisimple Jordan-Banach algebra are automatically continuous. By showing that "almost all" primitive ideals in the algebra are invariant under a given derivation, the general case is reduced to that of primitive Jordan-Banach algebras.

How to cite

top

Villena, A.. "Derivations on Jordan-Banach algebras." Studia Mathematica 118.3 (1996): 205-229. <http://eudml.org/doc/216274>.

@article{Villena1996,
abstract = {We establish that all derivations on a semisimple Jordan-Banach algebra are automatically continuous. By showing that "almost all" primitive ideals in the algebra are invariant under a given derivation, the general case is reduced to that of primitive Jordan-Banach algebras.},
author = {Villena, A.},
journal = {Studia Mathematica},
keywords = {derivations; semisimple Jordan-Banach algebra; automatically continuous; primitive ideals; primitive Jordan-Banach algebras},
language = {eng},
number = {3},
pages = {205-229},
title = {Derivations on Jordan-Banach algebras},
url = {http://eudml.org/doc/216274},
volume = {118},
year = {1996},
}

TY - JOUR
AU - Villena, A.
TI - Derivations on Jordan-Banach algebras
JO - Studia Mathematica
PY - 1996
VL - 118
IS - 3
SP - 205
EP - 229
AB - We establish that all derivations on a semisimple Jordan-Banach algebra are automatically continuous. By showing that "almost all" primitive ideals in the algebra are invariant under a given derivation, the general case is reduced to that of primitive Jordan-Banach algebras.
LA - eng
KW - derivations; semisimple Jordan-Banach algebra; automatically continuous; primitive ideals; primitive Jordan-Banach algebras
UR - http://eudml.org/doc/216274
ER -

References

top
  1. [1] B. Aupetit, The uniqueness of the complete norm topology in Banach algebras and Banach Jordan algebras, J. Funct. Anal. 47 (1982), 1-6. Zbl0488.46043
  2. [2] M. Cabrera, A. Moreno and A. Rodríguez, Zel'manov's theorem for primitive Jordan-Banach algebras, J. London Math. Soc., to appear. Zbl0922.17019
  3. [3] J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324. 
  4. [4] A. Fernández, Modular annihilator Jordan algebras, Comm. Algebra 13 (1985), 2597-2613. Zbl0613.17015
  5. [5] L. Hogben and K. McCrimmon, Maximal modular inner ideals and the Jacobson radical of a Jordan algebra, J. Algebra 68 (1981), 155-169. Zbl0449.17011
  6. [6] X. Jiang, Remarks on automatic continuity of derivations and module derivations, Acta Math. Sinica (N.S.) 4 (3) (1988) 227-233. Zbl0673.46026
  7. [7] B. E. Johnson, The uniqueness of the (complete) norm topology, Bull. Amer. Math. Soc. 73 (1967), 537-539. Zbl0172.41004
  8. [8] B. E. Johnson, Continuity of derivations on commutative algebras, Amer. J. Math. 91 (1969), 1-10. Zbl0181.41103
  9. [9] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, ibid. 90 (1968), 1067-1073. Zbl0179.18103
  10. [10] K. B. Laursen, Some remarks on automatic continuity, in: Lecture Notes in Math. 512, Springer, 1976, 96-108. 
  11. [11] K. McCrimmon, The radical of a Jordan algebra, Proc. Nat. Acad. Sci. U.S.A. 59 (1969), 671-678. Zbl0175.31002
  12. [12] K. McCrimmon and E. Zel'manov, The structure of strongly quadratic Jordan algebras, Adv. in Math. 69 (1988), 133-222. Zbl0656.17015
  13. [13] A. Rodríguez, The uniqueness of the complete norm topology in complete normed nonassociative algebras, J. Funct. Anal. 60 (1985), 1-15. Zbl0602.46055
  14. [14] A. Rodríguez, An approach to Jordan-Banach algebras from the theory of nonassociative complete normed algebras, Ann. Sci. Univ. Clermont-Ferrand II Math. 27 (1991), 1-57. Zbl0768.17014
  15. [15] A. Rodríguez, Jordan structures in analysis, in: Jordan Algebras, Proc. Conf. Oberwolfach, August 9-15, 1992, W. Kaup, K. McCrimmon and H. Petersson (eds.), de Gruyter, Berlin, 1994, 97-186. Zbl0818.17036
  16. [16] A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209-214. Zbl0175.44001
  17. [17] A. M. Sinclair, Continuity of Linear Operators, London Math. Soc. Lecture Note Ser. 21, Cambridge University Press, 1976. Zbl0313.47029
  18. [18] M. P. Thomas, Primitive ideals and derivations on non-commutative Banach algebras, Pacific J. Math. 159 (1993), 139-152. Zbl0739.47014
  19. [19] A. R. Villena, Continuity of derivations on a complete normed alternative algebra, J. Inst. Math. Comput. Sci. 3 (1990), 99-106. Zbl0876.46036
  20. [20] A. R. Villena, Continuity of derivations on H*-algebras, Proc. Amer. Math. Soc. 122 (1994), 821-826. Zbl0822.46061
  21. [21] E. I. Zel'manov, On prime Jordan algebras, Algebra i Logika 18 (1979), 162-175 (in Russian). 
  22. [22] E. I. Zel'manov, On prime Jordan algebras II, Siberian Math. J. 24 (1983), 89-104. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.