On the type constants with respect to systems of characters of a compact abelian group
Studia Mathematica (1996)
- Volume: 118, Issue: 3, page 231-243
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topHinrichs, Aicke. "On the type constants with respect to systems of characters of a compact abelian group." Studia Mathematica 118.3 (1996): 231-243. <http://eudml.org/doc/216275>.
@article{Hinrichs1996,
abstract = {We prove that there exists an absolute constant c such that for any positive integer n and any system Φ of $2^n$ characters of a compact abelian group, $2^\{-n/2\} t_Φ(T) ≤ c n^\{-1/2\} t_n(T)$, where T is an arbitrary operator between Banach spaces, $t_Φ(T)$ is the type norm of T with respect to Φ and $t_n(T)$ is the usual Rademacher type-2 norm computed with n vectors. For the system of the first $2^n$ Walsh functions this is even true with c=1. This result combined with known properties of such type norms provides easy access to quantitative versions of the fact that a nontrivial type of a Banach space implies finite cotype and nontrivial type with respect to the Walsh system or the trigonometric system.},
author = {Hinrichs, Aicke},
journal = {Studia Mathematica},
keywords = {characters; compact abelian group; Rademacher type-2 norm; finite cotype; nontrivial type; Walsh system; trigonometric system},
language = {eng},
number = {3},
pages = {231-243},
title = {On the type constants with respect to systems of characters of a compact abelian group},
url = {http://eudml.org/doc/216275},
volume = {118},
year = {1996},
}
TY - JOUR
AU - Hinrichs, Aicke
TI - On the type constants with respect to systems of characters of a compact abelian group
JO - Studia Mathematica
PY - 1996
VL - 118
IS - 3
SP - 231
EP - 243
AB - We prove that there exists an absolute constant c such that for any positive integer n and any system Φ of $2^n$ characters of a compact abelian group, $2^{-n/2} t_Φ(T) ≤ c n^{-1/2} t_n(T)$, where T is an arbitrary operator between Banach spaces, $t_Φ(T)$ is the type norm of T with respect to Φ and $t_n(T)$ is the usual Rademacher type-2 norm computed with n vectors. For the system of the first $2^n$ Walsh functions this is even true with c=1. This result combined with known properties of such type norms provides easy access to quantitative versions of the fact that a nontrivial type of a Banach space implies finite cotype and nontrivial type with respect to the Walsh system or the trigonometric system.
LA - eng
KW - characters; compact abelian group; Rademacher type-2 norm; finite cotype; nontrivial type; Walsh system; trigonometric system
UR - http://eudml.org/doc/216275
ER -
References
top- [1] B. Beauzamy, Introduction to Banach Spaces and their Geometry, Notas di Mat. 68, North-Holland, Amsterdam, 1982. Zbl0491.46014
- [2] J. Bourgain, On trigonometric series in superreflexive spaces, J. London Math. Soc. (2) 24 (1981), 165-174. Zbl0475.46008
- [3] J. Bourgain, A Hausdorff-Young inequality for B-convex Banach spaces, Pacific J. Math. 101 (1982), 255-262. Zbl0498.46014
- [4] J. Bourgain, Subspaces of , arithmetical diameter and Sidon sets, in: Probability in Banach Spaces V, Proceedings, Medford 1984, Lecture Notes in Math. 1153, Springer, Berlin, 1986, 96-127.
- [5] J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, 1995. Zbl0855.47016
- [6] H. König and L. Tzafriri, Some estimates for type and cotype constants, Math. Ann. 256 (1981), 85-94. Zbl0459.46011
- [7] J. L. Krivine, Sous-espaces de dimension finie des espaces de Banach réticulés, Ann. of Math. 104 (1976), 1-29. Zbl0329.46008
- [8] V. Mascioni, On weak cotype and weak type in Banach spaces, Note Mat. 8 (1988), 67-110. Zbl0818.46020
- [9] B. Maurey et G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90. Zbl0344.47014
- [10] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Math. 1200, Springer, Berlin, 1986. Zbl0606.46013
- [11] A. Pietsch, Gradations of the Hilbertian operator norm and geometry of Banach spaces, Forschungsergebnisse Univ. Jena N/89/6.
- [12] A. Pietsch, Sequences of ideal norms, Note Mat. 10 (1990), 411-441. Zbl0776.47009
- [13] A. Pietsch and J. Wenzel, Orthonormal systems and Banach space geometry, in preparation. Zbl0919.46001
- [14] G. Pisier, Sur les espaces de Banach qui ne contiennent pas uniformément de , C. R. Acad. Sci. Paris Sér. A 277 (1973), 991-994. Zbl0271.46011
- [15] G. Pisier, Les inégalités de Kahane-Khintchin d'après C. Borell, Séminaire sur la Géometrie des Espaces de Banach (1977-1978), Exposé No. VII, École Polytechnique, Palaiseau. Zbl0388.60013
- [16] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math. 60, Amer. Math. Soc., Providence, 1986.
- [17] G. Pisier, Sur les espaces de Banach de dimension finie à distance extrémale d'un espace euclidien, d'après V. D. Milman et H. Wolfson, Séminaire d'Analyse Fonctionnelle (1978-1979), Exposé No. XVI, École Polytechnique, Palaiseau.
- [18] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Longman, 1988.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.