Divergence of the Bochner-Riesz means in the weighted Hardy spaces

Shuichi Sato

Studia Mathematica (1996)

  • Volume: 118, Issue: 3, page 261-275
  • ISSN: 0039-3223

Abstract

top
We costruct functions in H w 1 ( w A 1 ) whose Fourier integral expansions are almost everywhere non-summable with respect to the Bochner-Riesz means of the critical order.

How to cite

top

Sato, Shuichi. "Divergence of the Bochner-Riesz means in the weighted Hardy spaces." Studia Mathematica 118.3 (1996): 261-275. <http://eudml.org/doc/216277>.

@article{Sato1996,
abstract = {We costruct functions in $H_\{w\}^\{1\}$ ($w ∈ A_\{1\}$) whose Fourier integral expansions are almost everywhere non-summable with respect to the Bochner-Riesz means of the critical order.},
author = {Sato, Shuichi},
journal = {Studia Mathematica},
keywords = {Bochner-Riesz means; weighted Hardy spaces; almost everywhere divergence; maximal operator},
language = {eng},
number = {3},
pages = {261-275},
title = {Divergence of the Bochner-Riesz means in the weighted Hardy spaces},
url = {http://eudml.org/doc/216277},
volume = {118},
year = {1996},
}

TY - JOUR
AU - Sato, Shuichi
TI - Divergence of the Bochner-Riesz means in the weighted Hardy spaces
JO - Studia Mathematica
PY - 1996
VL - 118
IS - 3
SP - 261
EP - 275
AB - We costruct functions in $H_{w}^{1}$ ($w ∈ A_{1}$) whose Fourier integral expansions are almost everywhere non-summable with respect to the Bochner-Riesz means of the critical order.
LA - eng
KW - Bochner-Riesz means; weighted Hardy spaces; almost everywhere divergence; maximal operator
UR - http://eudml.org/doc/216277
ER -

References

top
  1. [1] S. Bochner, Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc. 40 (1936), 175-207. Zbl62.0293.03
  2. [2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1954. Zbl0058.03301
  3. [3] T. W. Körner, Everywhere divergent Fourier series, Colloq. Math. 45 (1981), 103-118. Zbl0491.42011
  4. [4] S. Sato, Spherical summability and a vector-valued inequality, Bull. London Math. Soc. 27 (1995), 58-64. Zbl0821.42011
  5. [5] S. Sato, A weighted vector-valued weak type (1, 1) inequality and spherical summation, Studia Math. 109 (1994), 159-170. Zbl0826.42010
  6. [6] S. Sato, Weak type estimates for some maximal operators on the weighted Hardy spaces, Ark. Mat., to appear. Zbl0852.47016
  7. [7] S. Sato, Some weighted weak type estimates for rough operators, preprint, March 1995. 
  8. [8] E. M. Stein, On limits of sequences of operators, Ann. of Math. 74 (1961), 140-170. Zbl0103.08903
  9. [9] E. M. Stein, An H 1 function with non-summable Fourier expansions, in: Lecture Notes in Math. 992, Springer, Berlin, 1983, 193-200. 
  10. [10] E. M. Stein, M. H. Taibleson and G. Weiss, Weak type estimates for maximal operators on certain H p classes, Rend. Circ. Mat. Palermo (2), Suppl. 1 (1981), 81-97. Zbl0503.42018
  11. [11] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. Zbl0232.42007
  12. [12] J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, 1989, Springer, Berlin. 
  13. [13] R. Wheeden, A boundary value characterization of weighted H 1 , Enseign. Math. 24 (1976), 121-134. Zbl0324.31003
  14. [14] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1968. Zbl0157.38204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.