On generalized Bergman spaces
Studia Mathematica (1996)
- Volume: 119, Issue: 1, page 77-95
 - ISSN: 0039-3223
 
Access Full Article
topAbstract
topHow to cite
topLusky, Wolfgang. "On generalized Bergman spaces." Studia Mathematica 119.1 (1996): 77-95. <http://eudml.org/doc/216287>.
@article{Lusky1996,
	abstract = {Let D be the open unit disc and μ a positive bounded measure on [0,1]. Extending results of Mateljević/Pavlović and Shields/Williams we give Banach-space descriptions of the classes of all harmonic (holomorphic) functions f: D → ℂ satisfying $ʃ_\{0\}^\{1\} (ʃ_\{0\}^\{2π\} |f(re^\{iφ\})|^p dφ)^\{q/p\} dμ(r) < ∞$.},
	author = {Lusky, Wolfgang},
	journal = {Studia Mathematica},
	keywords = {open unit disc; positive bounded measure; Banach-space descriptions of the classes of all harmonic (holomorphic) functions},
	language = {eng},
	number = {1},
	pages = {77-95},
	title = {On generalized Bergman spaces},
	url = {http://eudml.org/doc/216287},
	volume = {119},
	year = {1996},
}
TY  - JOUR
AU  - Lusky, Wolfgang
TI  - On generalized Bergman spaces
JO  - Studia Mathematica
PY  - 1996
VL  - 119
IS  - 1
SP  - 77
EP  - 95
AB  - Let D be the open unit disc and μ a positive bounded measure on [0,1]. Extending results of Mateljević/Pavlović and Shields/Williams we give Banach-space descriptions of the classes of all harmonic (holomorphic) functions f: D → ℂ satisfying $ʃ_{0}^{1} (ʃ_{0}^{2π} |f(re^{iφ})|^p dφ)^{q/p} dμ(r) < ∞$.
LA  - eng
KW  - open unit disc; positive bounded measure; Banach-space descriptions of the classes of all harmonic (holomorphic) functions
UR  - http://eudml.org/doc/216287
ER  - 
References
top- [1] S. Axler, Bergman spaces and their operators, in: Survey of Some Recent Results in Operator Theory, B. Conway and B. Morrel (eds.), Pitman Res. Notes, 1988, 1-50.
 - [2] K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Sec. A 54 (1993), 70-79. Zbl0801.46021
 - [3] O. Blasco, Multipliers on weighted Besov spaces of analytic functions, in: Contemp. Math. 144, Amer. Math. Soc., 1993, 23-33. Zbl0838.42002
 - [4] R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in , Astérisque 77 (1980), 12-66. Zbl0472.46040
 - [5] P. L. Duren, Theory of -Spaces, Academic Press, New York, 1970. Zbl0215.20203
 - [6] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765. Zbl0246.30031
 - [7] T. M. Flett, Lipschitz spaces of functions on the circle and the disc, ibid. 39 (1972), 125-158. Zbl0253.46084
 - [8] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z. 34 (1932), 403-439. Zbl0003.15601
 - [9] G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. 12 (1941), 221-256. Zbl0060.21702
 - [10] J. Lindenstrauss and A. Pełczyński, Contributions to the theory of classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249. Zbl0224.46041
 - [11] W. Lusky, On the structure of and , Math. Nachr. 159 (1992), 279-289. Zbl0815.46023
 - [12] W. Lusky, On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. (2) 51 (1995), 309-320. Zbl0823.46025
 - [13] M. Mateljević and M. Pavlović, -behaviour of the integral means of analytic functions, Studia Math. 77 (1984), 219-237.
 - [14] L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280. Zbl0197.39001
 - [15] A. L. Shields and D. L. Williams, Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302. Zbl0227.46034
 - [16] A. L. Shields and D. L. Williams, Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 256-279. Zbl0367.46053
 - [17] A. L. Shields and D. L. Williams, Bounded projections and the growth of harmonic conjugates in the unit disc, Michigan Math. J. 29 (1982), 3-25. Zbl0508.31001
 - [18] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986. Zbl0621.42001
 - [19] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge University Press, 1991. Zbl0724.46012
 - [20] P. Wojtaszczyk, On unconditional polynomial bases in and Bergman spaces, Constr. Approx., to appear. Zbl0863.41004
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.