On generalized Bergman spaces

Wolfgang Lusky

Studia Mathematica (1996)

  • Volume: 119, Issue: 1, page 77-95
  • ISSN: 0039-3223

Abstract

top
Let D be the open unit disc and μ a positive bounded measure on [0,1]. Extending results of Mateljević/Pavlović and Shields/Williams we give Banach-space descriptions of the classes of all harmonic (holomorphic) functions f: D → ℂ satisfying ʃ 0 1 ( ʃ 0 2 π | f ( r e i φ ) | p d φ ) q / p d μ ( r ) < .

How to cite

top

Lusky, Wolfgang. "On generalized Bergman spaces." Studia Mathematica 119.1 (1996): 77-95. <http://eudml.org/doc/216287>.

@article{Lusky1996,
abstract = {Let D be the open unit disc and μ a positive bounded measure on [0,1]. Extending results of Mateljević/Pavlović and Shields/Williams we give Banach-space descriptions of the classes of all harmonic (holomorphic) functions f: D → ℂ satisfying $ʃ_\{0\}^\{1\} (ʃ_\{0\}^\{2π\} |f(re^\{iφ\})|^p dφ)^\{q/p\} dμ(r) < ∞$.},
author = {Lusky, Wolfgang},
journal = {Studia Mathematica},
keywords = {open unit disc; positive bounded measure; Banach-space descriptions of the classes of all harmonic (holomorphic) functions},
language = {eng},
number = {1},
pages = {77-95},
title = {On generalized Bergman spaces},
url = {http://eudml.org/doc/216287},
volume = {119},
year = {1996},
}

TY - JOUR
AU - Lusky, Wolfgang
TI - On generalized Bergman spaces
JO - Studia Mathematica
PY - 1996
VL - 119
IS - 1
SP - 77
EP - 95
AB - Let D be the open unit disc and μ a positive bounded measure on [0,1]. Extending results of Mateljević/Pavlović and Shields/Williams we give Banach-space descriptions of the classes of all harmonic (holomorphic) functions f: D → ℂ satisfying $ʃ_{0}^{1} (ʃ_{0}^{2π} |f(re^{iφ})|^p dφ)^{q/p} dμ(r) < ∞$.
LA - eng
KW - open unit disc; positive bounded measure; Banach-space descriptions of the classes of all harmonic (holomorphic) functions
UR - http://eudml.org/doc/216287
ER -

References

top
  1. [1] S. Axler, Bergman spaces and their operators, in: Survey of Some Recent Results in Operator Theory, B. Conway and B. Morrel (eds.), Pitman Res. Notes, 1988, 1-50. 
  2. [2] K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Sec. A 54 (1993), 70-79. Zbl0801.46021
  3. [3] O. Blasco, Multipliers on weighted Besov spaces of analytic functions, in: Contemp. Math. 144, Amer. Math. Soc., 1993, 23-33. Zbl0838.42002
  4. [4] R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in L p , Astérisque 77 (1980), 12-66. Zbl0472.46040
  5. [5] P. L. Duren, Theory of H p -Spaces, Academic Press, New York, 1970. Zbl0215.20203
  6. [6] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765. Zbl0246.30031
  7. [7] T. M. Flett, Lipschitz spaces of functions on the circle and the disc, ibid. 39 (1972), 125-158. Zbl0253.46084
  8. [8] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z. 34 (1932), 403-439. Zbl0003.15601
  9. [9] G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. 12 (1941), 221-256. Zbl0060.21702
  10. [10] J. Lindenstrauss and A. Pełczyński, Contributions to the theory of classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249. Zbl0224.46041
  11. [11] W. Lusky, On the structure of H v 0 ( D ) and h v 0 ( D ) , Math. Nachr. 159 (1992), 279-289. Zbl0815.46023
  12. [12] W. Lusky, On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. (2) 51 (1995), 309-320. Zbl0823.46025
  13. [13] M. Mateljević and M. Pavlović, L p -behaviour of the integral means of analytic functions, Studia Math. 77 (1984), 219-237. 
  14. [14] L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280. Zbl0197.39001
  15. [15] A. L. Shields and D. L. Williams, Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302. Zbl0227.46034
  16. [16] A. L. Shields and D. L. Williams, Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 256-279. Zbl0367.46053
  17. [17] A. L. Shields and D. L. Williams, Bounded projections and the growth of harmonic conjugates in the unit disc, Michigan Math. J. 29 (1982), 3-25. Zbl0508.31001
  18. [18] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986. Zbl0621.42001
  19. [19] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge University Press, 1991. Zbl0724.46012
  20. [20] P. Wojtaszczyk, On unconditional polynomial bases in L p and Bergman spaces, Constr. Approx., to appear. Zbl0863.41004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.