Amenability of Banach and C*-algebras on locally compact groups

A. Lau; R. Loy; G. Willis

Studia Mathematica (1996)

  • Volume: 119, Issue: 2, page 161-178
  • ISSN: 0039-3223

Abstract

top
Several results are given about the amenability of certain algebras defined by locally compact groups. The algebras include the C*-algebras and von Neumann algebras determined by the representation theory of the group, the Fourier algebra A(G), and various subalgebras of these.

How to cite

top

Lau, A., Loy, R., and Willis, G.. "Amenability of Banach and C*-algebras on locally compact groups." Studia Mathematica 119.2 (1996): 161-178. <http://eudml.org/doc/216292>.

@article{Lau1996,
abstract = {Several results are given about the amenability of certain algebras defined by locally compact groups. The algebras include the C*-algebras and von Neumann algebras determined by the representation theory of the group, the Fourier algebra A(G), and various subalgebras of these.},
author = {Lau, A., Loy, R., Willis, G.},
journal = {Studia Mathematica},
keywords = {amenability; algebras defined by locally compact groups; -algebras; von Neumann algebras; Fourier algebra},
language = {eng},
number = {2},
pages = {161-178},
title = {Amenability of Banach and C*-algebras on locally compact groups},
url = {http://eudml.org/doc/216292},
volume = {119},
year = {1996},
}

TY - JOUR
AU - Lau, A.
AU - Loy, R.
AU - Willis, G.
TI - Amenability of Banach and C*-algebras on locally compact groups
JO - Studia Mathematica
PY - 1996
VL - 119
IS - 2
SP - 161
EP - 178
AB - Several results are given about the amenability of certain algebras defined by locally compact groups. The algebras include the C*-algebras and von Neumann algebras determined by the representation theory of the group, the Fourier algebra A(G), and various subalgebras of these.
LA - eng
KW - amenability; algebras defined by locally compact groups; -algebras; von Neumann algebras; Fourier algebra
UR - http://eudml.org/doc/216292
ER -

References

top
  1. [1] A. Bérlanger and B. E. Forrest, Geometric properties of coefficient function spaces determined by unitary representations of a locally compact group, J. Math. Anal. Appl. 193 (1995), 390-405. Zbl0854.43010
  2. [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, New York, 1973. Zbl0271.46039
  3. [3] G. Brown and W. Moran, Point derivations on M(G), Bull. London Math. Soc. 8 (1976), 57-64. 
  4. [4] J. W. Bunce, Finite operators and amenable C*-algebras, Proc. Amer. Math. Soc. 56 (1976), 145-151. Zbl0343.46039
  5. [5] M. D. Choi and E. Effros, Nuclear C*-algebras and the approximation property, Amer. J. Math. 100 (1978), 61-80. Zbl0397.46054
  6. [6] E. Christensen and A. M. Sinclair, Completely bounded isomorphisms of injective von Neumann algebras, Proc. Edinburgh Math. Soc. 32 (1989), 317-327. Zbl0651.46059
  7. [7] C.-H. Chu and B. Iochum, The Dunford-Pettis property in C*-algebras, Studia Math. 97 (1990), 59-64. Zbl0734.46034
  8. [8] C.-H. Chu, B. Iochum and S. Watanabe, C*-algebras with the Dunford-Pettis property, in: Function Spaces, K. Jarosz (ed.), Dekker, New York, 1992, 67-70. Zbl0817.46054
  9. [9] A. Connes, On the cohomology of operator algebras, J. Funct. Anal. 28 (1978), 248-253. Zbl0408.46042
  10. [10] M. Cowling and P. Rodway, Restrictions of certain function spaces to closed subgroups of locally compact groups, Pacific J. Math. 80 (1979), 91-104. Zbl0417.43002
  11. [11] P. C. Curtis, Jr., and R. J. Loy, The structure of amenable Banach algebras, J. London Math. Soc. (2) 40 (1989), 89-104. Zbl0698.46043
  12. [12] J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 309-325. Zbl0427.46028
  13. [13] J. Duncan and I. Namioka, Amenability of inverse semigroups and their semigroup algebras, ibid. 80 (1978), 309-321. Zbl0393.22004
  14. [14] J. Duncan and A. L. T. Paterson, Amenability for discrete convolution semigroup algebras, Math. Scand. 66 (1990), 141-146. Zbl0748.46027
  15. [15] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. Zbl0169.46403
  16. [16] E. Formanek, The type I part of the regular representation, Canad. J. Math. 26 (1974), 1086-1089. Zbl0253.43012
  17. [17] F. Ghahramani and A. T.-M. Lau, Multipliers and ideals in second conjugate algebras related to group algebras, J. Funct. Anal. 132 (1995), 170-191. Zbl0832.22007
  18. [18] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc., to appear. Zbl0851.46035
  19. [19] E. Granirer, Weakly almost periodic and uniformly continuous functions on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 189 (1974), 371-382. Zbl0292.43015
  20. [20] N. Grønbæk, Amenability of discrete convolution algebras, the commutative case, Pacific. J. Math. 143 (1990), 243-249. Zbl0662.43002
  21. [21] U. Haagerup, All nuclear C*-algebras are amenable, Invent. Math. 74 (1983), 305-319. Zbl0529.46041
  22. [22] M. Hamana, On linear topological properties of some C*-algebras, Tôhoku Math. J. 29 (1977), 157-163. Zbl0346.46045
  23. [23] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Kluwer, Dordrecht, 1989. 
  24. [24] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967. Zbl0217.07201
  25. [25] M. F. Hutchinson, Non-tall compact groups admit infinite Sidon sets, J. Austral. Math. Soc. 23 (1977), 467-475. Zbl0368.43005
  26. [26] I. M. Isaacs and D. S. Passman, Groups with representations of bounded degree, Canad. J. Math. 16 (1964), 299-309. Zbl0124.26701
  27. [27] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972). Zbl0256.18014
  28. [28] B. E. Johnson, Non-amenability of the Fourier algebra of a compact group, J. London Math. Soc. (2) 50 (1994), 361-374. Zbl0829.43004
  29. [29] A. Kaniuth, On the conjugate representation of a locally compact group, Math. Z. 202 (1989), 275-288. Zbl0681.22005
  30. [30] A. T.-M. Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 251 (1979), 39-59. Zbl0436.43007
  31. [31] A. T.-M. Lau, The second conjugate algebra of the Fourier algebra of a locally compact group, ibid. 267 (1981), 53-63. Zbl0489.43006
  32. [32] A. T.-M. Lau and V. Losert, The C*-algebra generated by operators with compact support on a locally compact group, J. Funct. Anal. 112 (1993), 1-30. Zbl0788.22006
  33. [33] A. T.-M. Lau and R. J. Loy, Amenability of convolution algebras, Math. Scand., to appear. Zbl0880.46038
  34. [34] A. T.-M. Lau and A. L. T. Paterson, Inner amenable locally compact groups, Trans. Amer. Math. Soc. 325 (1991), 155-169. Zbl0718.43002
  35. [35] J. R. McMullen and J. F. Price, Rudin-Shapiro sequences for arbitrary compact groups, J. Austral. Math. Soc. 22 (1976), 421-430. Zbl0342.43018
  36. [36] C. C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401-410. Zbl0236.22010
  37. [37] T. W. Palmer, Classes of non-abelian, non-compact locally compact groups, Rocky Mountain J. Math. 8 (1973), 683-741. 
  38. [38] A. L. T. Paterson, Amenability, Math. Surveys Monographs 29, Amer. Math. Soc., Providence, 1988. 
  39. [39] G. K. Pederson, C*-Algebras and their Automorphism Groups, Academic Press, London, 1979. Zbl0437.65048
  40. [40] P. F. Renauld, Invariant means on a class of von Neumann algebras, Trans. Amer. Math. Soc. 170 (1972), 285-291. 
  41. [41] R. R. Smith and D. P. Williams, The decomposition property for C*-algebras, J. Operator Theory 16 (1986), 51-74. Zbl0633.46058
  42. [42] A. Szankowski, B (H) does not have the approximation property, Acta Math. 147 (1981), 89-108. Zbl0486.46012
  43. [43] M. Takesaki, Theory of Operator Algebras I, Springer, New York, 1979. 
  44. [44] K. Taylor, The type structure of the regular representation of a locally compact group, Math. Ann. 222 (1976), 211-214. Zbl0318.43005
  45. [45] E. Thoma, Eine Charakterisierung diskreter Gruppen vom typ 1, Invent. Math. 6 (1968), 190-196. Zbl0169.03802
  46. [46] S. Wassermann, On tensor products of certain group C*-algebras, J. Funct. Anal. 23 (1976), 239-254. Zbl0358.46040
  47. [47] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Univ. Press, Cambridge, 1991. Zbl0724.46012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.