Amenability of Banach and C*-algebras on locally compact groups
Studia Mathematica (1996)
- Volume: 119, Issue: 2, page 161-178
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topLau, A., Loy, R., and Willis, G.. "Amenability of Banach and C*-algebras on locally compact groups." Studia Mathematica 119.2 (1996): 161-178. <http://eudml.org/doc/216292>.
@article{Lau1996,
abstract = {Several results are given about the amenability of certain algebras defined by locally compact groups. The algebras include the C*-algebras and von Neumann algebras determined by the representation theory of the group, the Fourier algebra A(G), and various subalgebras of these.},
author = {Lau, A., Loy, R., Willis, G.},
journal = {Studia Mathematica},
keywords = {amenability; algebras defined by locally compact groups; -algebras; von Neumann algebras; Fourier algebra},
language = {eng},
number = {2},
pages = {161-178},
title = {Amenability of Banach and C*-algebras on locally compact groups},
url = {http://eudml.org/doc/216292},
volume = {119},
year = {1996},
}
TY - JOUR
AU - Lau, A.
AU - Loy, R.
AU - Willis, G.
TI - Amenability of Banach and C*-algebras on locally compact groups
JO - Studia Mathematica
PY - 1996
VL - 119
IS - 2
SP - 161
EP - 178
AB - Several results are given about the amenability of certain algebras defined by locally compact groups. The algebras include the C*-algebras and von Neumann algebras determined by the representation theory of the group, the Fourier algebra A(G), and various subalgebras of these.
LA - eng
KW - amenability; algebras defined by locally compact groups; -algebras; von Neumann algebras; Fourier algebra
UR - http://eudml.org/doc/216292
ER -
References
top- [1] A. Bérlanger and B. E. Forrest, Geometric properties of coefficient function spaces determined by unitary representations of a locally compact group, J. Math. Anal. Appl. 193 (1995), 390-405. Zbl0854.43010
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, New York, 1973. Zbl0271.46039
- [3] G. Brown and W. Moran, Point derivations on M(G), Bull. London Math. Soc. 8 (1976), 57-64.
- [4] J. W. Bunce, Finite operators and amenable C*-algebras, Proc. Amer. Math. Soc. 56 (1976), 145-151. Zbl0343.46039
- [5] M. D. Choi and E. Effros, Nuclear C*-algebras and the approximation property, Amer. J. Math. 100 (1978), 61-80. Zbl0397.46054
- [6] E. Christensen and A. M. Sinclair, Completely bounded isomorphisms of injective von Neumann algebras, Proc. Edinburgh Math. Soc. 32 (1989), 317-327. Zbl0651.46059
- [7] C.-H. Chu and B. Iochum, The Dunford-Pettis property in C*-algebras, Studia Math. 97 (1990), 59-64. Zbl0734.46034
- [8] C.-H. Chu, B. Iochum and S. Watanabe, C*-algebras with the Dunford-Pettis property, in: Function Spaces, K. Jarosz (ed.), Dekker, New York, 1992, 67-70. Zbl0817.46054
- [9] A. Connes, On the cohomology of operator algebras, J. Funct. Anal. 28 (1978), 248-253. Zbl0408.46042
- [10] M. Cowling and P. Rodway, Restrictions of certain function spaces to closed subgroups of locally compact groups, Pacific J. Math. 80 (1979), 91-104. Zbl0417.43002
- [11] P. C. Curtis, Jr., and R. J. Loy, The structure of amenable Banach algebras, J. London Math. Soc. (2) 40 (1989), 89-104. Zbl0698.46043
- [12] J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 309-325. Zbl0427.46028
- [13] J. Duncan and I. Namioka, Amenability of inverse semigroups and their semigroup algebras, ibid. 80 (1978), 309-321. Zbl0393.22004
- [14] J. Duncan and A. L. T. Paterson, Amenability for discrete convolution semigroup algebras, Math. Scand. 66 (1990), 141-146. Zbl0748.46027
- [15] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. Zbl0169.46403
- [16] E. Formanek, The type I part of the regular representation, Canad. J. Math. 26 (1974), 1086-1089. Zbl0253.43012
- [17] F. Ghahramani and A. T.-M. Lau, Multipliers and ideals in second conjugate algebras related to group algebras, J. Funct. Anal. 132 (1995), 170-191. Zbl0832.22007
- [18] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc., to appear. Zbl0851.46035
- [19] E. Granirer, Weakly almost periodic and uniformly continuous functions on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 189 (1974), 371-382. Zbl0292.43015
- [20] N. Grønbæk, Amenability of discrete convolution algebras, the commutative case, Pacific. J. Math. 143 (1990), 243-249. Zbl0662.43002
- [21] U. Haagerup, All nuclear C*-algebras are amenable, Invent. Math. 74 (1983), 305-319. Zbl0529.46041
- [22] M. Hamana, On linear topological properties of some C*-algebras, Tôhoku Math. J. 29 (1977), 157-163. Zbl0346.46045
- [23] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Kluwer, Dordrecht, 1989.
- [24] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967. Zbl0217.07201
- [25] M. F. Hutchinson, Non-tall compact groups admit infinite Sidon sets, J. Austral. Math. Soc. 23 (1977), 467-475. Zbl0368.43005
- [26] I. M. Isaacs and D. S. Passman, Groups with representations of bounded degree, Canad. J. Math. 16 (1964), 299-309. Zbl0124.26701
- [27] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972). Zbl0256.18014
- [28] B. E. Johnson, Non-amenability of the Fourier algebra of a compact group, J. London Math. Soc. (2) 50 (1994), 361-374. Zbl0829.43004
- [29] A. Kaniuth, On the conjugate representation of a locally compact group, Math. Z. 202 (1989), 275-288. Zbl0681.22005
- [30] A. T.-M. Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 251 (1979), 39-59. Zbl0436.43007
- [31] A. T.-M. Lau, The second conjugate algebra of the Fourier algebra of a locally compact group, ibid. 267 (1981), 53-63. Zbl0489.43006
- [32] A. T.-M. Lau and V. Losert, The C*-algebra generated by operators with compact support on a locally compact group, J. Funct. Anal. 112 (1993), 1-30. Zbl0788.22006
- [33] A. T.-M. Lau and R. J. Loy, Amenability of convolution algebras, Math. Scand., to appear. Zbl0880.46038
- [34] A. T.-M. Lau and A. L. T. Paterson, Inner amenable locally compact groups, Trans. Amer. Math. Soc. 325 (1991), 155-169. Zbl0718.43002
- [35] J. R. McMullen and J. F. Price, Rudin-Shapiro sequences for arbitrary compact groups, J. Austral. Math. Soc. 22 (1976), 421-430. Zbl0342.43018
- [36] C. C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401-410. Zbl0236.22010
- [37] T. W. Palmer, Classes of non-abelian, non-compact locally compact groups, Rocky Mountain J. Math. 8 (1973), 683-741.
- [38] A. L. T. Paterson, Amenability, Math. Surveys Monographs 29, Amer. Math. Soc., Providence, 1988.
- [39] G. K. Pederson, C*-Algebras and their Automorphism Groups, Academic Press, London, 1979. Zbl0437.65048
- [40] P. F. Renauld, Invariant means on a class of von Neumann algebras, Trans. Amer. Math. Soc. 170 (1972), 285-291.
- [41] R. R. Smith and D. P. Williams, The decomposition property for C*-algebras, J. Operator Theory 16 (1986), 51-74. Zbl0633.46058
- [42] A. Szankowski, B (H) does not have the approximation property, Acta Math. 147 (1981), 89-108. Zbl0486.46012
- [43] M. Takesaki, Theory of Operator Algebras I, Springer, New York, 1979.
- [44] K. Taylor, The type structure of the regular representation of a locally compact group, Math. Ann. 222 (1976), 211-214. Zbl0318.43005
- [45] E. Thoma, Eine Charakterisierung diskreter Gruppen vom typ 1, Invent. Math. 6 (1968), 190-196. Zbl0169.03802
- [46] S. Wassermann, On tensor products of certain group C*-algebras, J. Funct. Anal. 23 (1976), 239-254. Zbl0358.46040
- [47] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Univ. Press, Cambridge, 1991. Zbl0724.46012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.