Convolution operators on Hardy spaces
Studia Mathematica (1996)
- Volume: 120, Issue: 1, page 53-59
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topLin, Chin-Cheng. "Convolution operators on Hardy spaces." Studia Mathematica 120.1 (1996): 53-59. <http://eudml.org/doc/216320>.
@article{Lin1996,
abstract = {We give sufficient conditions on the kernel K for the convolution operator Tf = K ∗ f to be bounded on Hardy spaces $H^p(G)$, where G is a homogeneous group.},
author = {Lin, Chin-Cheng},
journal = {Studia Mathematica},
keywords = {atomic decomposition; Hardy spaces; homogeneous groups; convolution; singular integral},
language = {eng},
number = {1},
pages = {53-59},
title = {Convolution operators on Hardy spaces},
url = {http://eudml.org/doc/216320},
volume = {120},
year = {1996},
}
TY - JOUR
AU - Lin, Chin-Cheng
TI - Convolution operators on Hardy spaces
JO - Studia Mathematica
PY - 1996
VL - 120
IS - 1
SP - 53
EP - 59
AB - We give sufficient conditions on the kernel K for the convolution operator Tf = K ∗ f to be bounded on Hardy spaces $H^p(G)$, where G is a homogeneous group.
LA - eng
KW - atomic decomposition; Hardy spaces; homogeneous groups; convolution; singular integral
UR - http://eudml.org/doc/216320
ER -
References
top- [CW1] R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
- [CW2] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
- [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton Univ. Press, Princeton, N.J., 1982. Zbl0508.42025
- [HJTW] Y. Han, B. Jawerth, M. Taibleson, and G. Weiss, Littlewood-Paley theory and ϵ-families of operators, Colloq. Math. 60//61 (1990), 321-359. Zbl0763.46024
- [L] C.-C. Lin, multipliers and their - estimates on the Heisenberg group, Rev. Mat. Iberoamericana 11 (1995), 269-308.
- [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501
- [TW] M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-149. Zbl0472.46041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.