Convolution operators on Hardy spaces

Chin-Cheng Lin

Studia Mathematica (1996)

  • Volume: 120, Issue: 1, page 53-59
  • ISSN: 0039-3223

Abstract

top
We give sufficient conditions on the kernel K for the convolution operator Tf = K ∗ f to be bounded on Hardy spaces H p ( G ) , where G is a homogeneous group.

How to cite

top

Lin, Chin-Cheng. "Convolution operators on Hardy spaces." Studia Mathematica 120.1 (1996): 53-59. <http://eudml.org/doc/216320>.

@article{Lin1996,
abstract = {We give sufficient conditions on the kernel K for the convolution operator Tf = K ∗ f to be bounded on Hardy spaces $H^p(G)$, where G is a homogeneous group.},
author = {Lin, Chin-Cheng},
journal = {Studia Mathematica},
keywords = {atomic decomposition; Hardy spaces; homogeneous groups; convolution; singular integral},
language = {eng},
number = {1},
pages = {53-59},
title = {Convolution operators on Hardy spaces},
url = {http://eudml.org/doc/216320},
volume = {120},
year = {1996},
}

TY - JOUR
AU - Lin, Chin-Cheng
TI - Convolution operators on Hardy spaces
JO - Studia Mathematica
PY - 1996
VL - 120
IS - 1
SP - 53
EP - 59
AB - We give sufficient conditions on the kernel K for the convolution operator Tf = K ∗ f to be bounded on Hardy spaces $H^p(G)$, where G is a homogeneous group.
LA - eng
KW - atomic decomposition; Hardy spaces; homogeneous groups; convolution; singular integral
UR - http://eudml.org/doc/216320
ER -

References

top
  1. [CW1] R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971. 
  2. [CW2] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
  3. [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton Univ. Press, Princeton, N.J., 1982. Zbl0508.42025
  4. [HJTW] Y. Han, B. Jawerth, M. Taibleson, and G. Weiss, Littlewood-Paley theory and ϵ-families of operators, Colloq. Math. 60//61 (1990), 321-359. Zbl0763.46024
  5. [L] C.-C. Lin, L p multipliers and their H 1 - L 1 estimates on the Heisenberg group, Rev. Mat. Iberoamericana 11 (1995), 269-308. 
  6. [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501
  7. [TW] M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-149. Zbl0472.46041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.