Analytic and C k approximations of norms in separable Banach spaces

Robert Deville; Vladimir Fonf; Petr Hájek

Studia Mathematica (1996)

  • Volume: 120, Issue: 1, page 61-74
  • ISSN: 0039-3223

How to cite

top

Deville, Robert, Fonf, Vladimir, and Hájek, Petr. "Analytic and $C^k$ approximations of norms in separable Banach spaces." Studia Mathematica 120.1 (1996): 61-74. <http://eudml.org/doc/216321>.

@article{Deville1996,
abstract = {},
author = {Deville, Robert, Fonf, Vladimir, Hájek, Petr},
journal = {Studia Mathematica},
keywords = {analytic norm; approximation; convex function; geometry of Banach spaces; every equivalent norm can be approximated uniformly on bounded sets by analytic norms; -smooth norms},
language = {eng},
number = {1},
pages = {61-74},
title = {Analytic and $C^k$ approximations of norms in separable Banach spaces},
url = {http://eudml.org/doc/216321},
volume = {120},
year = {1996},
}

TY - JOUR
AU - Deville, Robert
AU - Fonf, Vladimir
AU - Hájek, Petr
TI - Analytic and $C^k$ approximations of norms in separable Banach spaces
JO - Studia Mathematica
PY - 1996
VL - 120
IS - 1
SP - 61
EP - 74
AB -
LA - eng
KW - analytic norm; approximation; convex function; geometry of Banach spaces; every equivalent norm can be approximated uniformly on bounded sets by analytic norms; -smooth norms
UR - http://eudml.org/doc/216321
ER -

References

top
  1. [D] R. Deville, Geometrical implications of the existence of very smooth bump functions in Banach spaces, Israel J. Math. 6 (1989), 1-22. Zbl0691.46009
  2. [DFH] R. Deville, V. Fonf and P. Hájek, Analytic and polyhedral approximation of convex bodies in separable polyhedral Banach spaces, to appear. Zbl0920.46011
  3. [DGZ] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs Surveys Pure Appl. Math. 64, Longman, 1993. 
  4. [Dieu] J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1960. Zbl0100.04201
  5. [FFWZ] M. Fabian, D. Preiss, J. H. M. Whitfield and V. Zizler, Separating polynomials on Banach spaces, Quart. J. Math. Oxford Ser. (2) 40 (1989), 409-422. Zbl0715.46007
  6. [Fe] H. Federer, Geometric Measure Theory, Springer, 1969. 
  7. [HH] P. Habala and P. Hájek, Stabilization of polynomials, C. R. Acad. Sci. Paris Sér. I 320 (1995), 821-825. Zbl0826.46037
  8. [H1] R. Haydon, Normes infiniment différentiables sur certains espaces de Banach, ibid. 315 (1992), 1175-1178. Zbl0788.46008
  9. [H2] R. Haydon, Smooth functions and partitions of unity on certain Banach spaces, to appear. 
  10. [Ku1] J. Kurzweil, On approximation in real Banach spaces, Studia Math. 14 (1954), 213-231. 
  11. [Ku2] J. Kurzweil, On approximation in real Banach spaces by analytic operations, ibid. 16 (1957), 124-129. Zbl0080.32602
  12. [M] P. Mazet, Analytic Sets in Locally Convex Spaces, North-Holland Math. Stud. 89, North-Holland, 1984. 
  13. [N] L. Nachbin, Topology on Spaces of Holomorphic Mappings, Springer, 1969. Zbl0172.39902
  14. [NS] A. M. Nemirovskiĭ and S. M. Semenov, On polynomial approximation of functions on Hilbert space, Mat. Sb. 92 (1973), 257-281 (in Russian). Zbl0286.41025
  15. [Zp] M. Zippin, The separable extension problem, Israel J. Math. 26 (1977), 372-387. Zbl0347.46076

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.