On approach regions for the conjugate Poisson integral and singular integrals

S. Ferrando; R. Jones; K. Reinhold

Studia Mathematica (1996)

  • Volume: 120, Issue: 2, page 169-182
  • ISSN: 0039-3223

Abstract

top
Let ũ denote the conjugate Poisson integral of a function f L p ( ) . We give conditions on a region Ω so that l i m ( v , ε ) ( 0 , 0 ) ( v , ε ) Ω ũ ( x + v , ε ) = H f ( x ) , the Hilbert transform of f at x, for a.e. x. We also consider more general Calderón-Zygmund singular integrals and give conditions on a set Ω so that s u p ( v , r ) Ω | ʃ | t | > r k ( x + v - t ) f ( t ) d t | is a bounded operator on L p , 1 < p < ∞, and is weak (1,1).

How to cite

top

Ferrando, S., Jones, R., and Reinhold, K.. "On approach regions for the conjugate Poisson integral and singular integrals." Studia Mathematica 120.2 (1996): 169-182. <http://eudml.org/doc/216328>.

@article{Ferrando1996,
abstract = {Let ũ denote the conjugate Poisson integral of a function $f ∈ L^\{p\}(ℝ)$. We give conditions on a region Ω so that $lim_\{(v,ε)→(0,0)\}_\{(v,ε)∈Ω\} ũ(x+v,ε) = Hf(x)$, the Hilbert transform of f at x, for a.e. x. We also consider more general Calderón-Zygmund singular integrals and give conditions on a set Ω so that $sup_\{(v,r)∈Ω\} |ʃ_\{|t|>r\} k(x+v-t)f(t)dt|$ is a bounded operator on $L^p$, 1 < p < ∞, and is weak (1,1).},
author = {Ferrando, S., Jones, R., Reinhold, K.},
journal = {Studia Mathematica},
keywords = {cone condition; conjugate Poisson integral; singular integrals; ergodic Hilbert transform; approach regions; Calderón-Zygmund singular integral; maximal transform; ergodic theory},
language = {eng},
number = {2},
pages = {169-182},
title = {On approach regions for the conjugate Poisson integral and singular integrals},
url = {http://eudml.org/doc/216328},
volume = {120},
year = {1996},
}

TY - JOUR
AU - Ferrando, S.
AU - Jones, R.
AU - Reinhold, K.
TI - On approach regions for the conjugate Poisson integral and singular integrals
JO - Studia Mathematica
PY - 1996
VL - 120
IS - 2
SP - 169
EP - 182
AB - Let ũ denote the conjugate Poisson integral of a function $f ∈ L^{p}(ℝ)$. We give conditions on a region Ω so that $lim_{(v,ε)→(0,0)}_{(v,ε)∈Ω} ũ(x+v,ε) = Hf(x)$, the Hilbert transform of f at x, for a.e. x. We also consider more general Calderón-Zygmund singular integrals and give conditions on a set Ω so that $sup_{(v,r)∈Ω} |ʃ_{|t|>r} k(x+v-t)f(t)dt|$ is a bounded operator on $L^p$, 1 < p < ∞, and is weak (1,1).
LA - eng
KW - cone condition; conjugate Poisson integral; singular integrals; ergodic Hilbert transform; approach regions; Calderón-Zygmund singular integral; maximal transform; ergodic theory
UR - http://eudml.org/doc/216328
ER -

References

top
  1. [1] M. A. Akcoglu and Y. Déniel, Moving weighted averages, Canad. J. Math. 45 (1993), 449-469. 
  2. [2] A. P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349-353. Zbl0185.21806
  3. [3] P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335-400. Zbl37.0283.01
  4. [4] S. Ferrando, Moving ergodic theorems for superadditive processes, Ph.D. thesis, Univ. of Toronto, 1994. Zbl0837.28013
  5. [5] A. Nagel and E. M. Stein, On certain maximal functions and approach regions, Adv. Math. 54 (1984), 83-106. Zbl0546.42017
  6. [6] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501
  7. [7] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, N.J., 1993. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.