Singular values, Ramanujan modular equations, and Landen transformations
Studia Mathematica (1996)
- Volume: 121, Issue: 3, page 221-230
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topVuorinen, M.. "Singular values, Ramanujan modular equations, and Landen transformations." Studia Mathematica 121.3 (1996): 221-230. <http://eudml.org/doc/216353>.
@article{Vuorinen1996,
abstract = {A new connection between geometric function theory and number theory is derived from Ramanujan’s work on modular equations. This connection involves the function $φ_K(r)$ recurrent in the theory of plane quasiconformal maps. Ramanujan’s modular identities yield numerous new functional identities for $φ_\{1/p\}(r)$ for various primes p.},
author = {Vuorinen, M.},
journal = {Studia Mathematica},
keywords = {plane quasiconformal maps; modulus of Grötzsch domain; complete elliptic integral; Landen transformation},
language = {eng},
number = {3},
pages = {221-230},
title = {Singular values, Ramanujan modular equations, and Landen transformations},
url = {http://eudml.org/doc/216353},
volume = {121},
year = {1996},
}
TY - JOUR
AU - Vuorinen, M.
TI - Singular values, Ramanujan modular equations, and Landen transformations
JO - Studia Mathematica
PY - 1996
VL - 121
IS - 3
SP - 221
EP - 230
AB - A new connection between geometric function theory and number theory is derived from Ramanujan’s work on modular equations. This connection involves the function $φ_K(r)$ recurrent in the theory of plane quasiconformal maps. Ramanujan’s modular identities yield numerous new functional identities for $φ_{1/p}(r)$ for various primes p.
LA - eng
KW - plane quasiconformal maps; modulus of Grötzsch domain; complete elliptic integral; Landen transformation
UR - http://eudml.org/doc/216353
ER -
References
top- [AB] G. Almkvist and B. Berndt, Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π, and the Ladies Diary, Amer. Math. Monthly 95 (1988), 585-608. Zbl0665.26007
- [AV] G. D. Anderson and M. K. Vamanamurthy, Some properties of quasiconformal distortion functions, New Zealand J. Math. 24 (1995), 1-15. Zbl0857.30019
- [AVV1] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Functional inequalities for complete elliptic integrals and their ratios, SIAM J. Math. Anal. 21 (1990), 536-549. Zbl0692.33001
- [AVV2] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Inequalities for plane quasiconformal mappings, in: The Mathematical Heritage of Wilhelm Magnus - Groups, Geometry and Special Functions, W. Abikoff, J. S. Birman and K. Kuiken (eds.), Contemp. Math. 169, Amer. Math. Soc., 1994, 1-27.
- [B] B. C. Berndt, Ramanujan Notebooks, Part III, Springer, Berlin, 1991.
- [BBG] B. C. Berndt, S. Bhargava, and F. G. Garvan, Ramanujan's theories of elliptic functions to alternative bases, Trans. Amer. Math. Soc. 347 (1995), 4163-4244. Zbl0843.33012
- [BC] B. C. Berndt and H. H. Chan, Ramanujan's explicit values for the classical theta-functions, Mathematika 42 (1995), 278-294. Zbl0862.33016
- [BB] J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987.
- [FK] H. M. Farkas and Y. Kopeliovich, New theta constant identities II, Proc. Amer. Math. Soc. 123 (1995), 1009-1020. Zbl0826.11018
- [H] G. H. Hardy, Ramanujan, Chelsea, New York, 1940.
- [J] C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, 1829, Jacobi's Gesammelte Werke, Vol. 1, Berlin, 1881-1891.
- [KZ] W. Kawa and J. Zając, Dynamical approximation of the distortion function , Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 20 (1995), 39-48. Zbl0876.30016
- [L] D. F. Lawden, Elliptic Functions and Applications, Springer, New York, 1989. Zbl0689.33001
- [LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed., Grundlehren Math. Wiss. 126, Springer, New York, 1973. Zbl0267.30016
- [P1] D. Partyka, Approximation of the Hersch-Pfluger distortion function. Applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 99-111.
- [P2] D. Partyka, Approximation of the Hersch-Pfluger distortion function, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 343-354. Zbl0793.30013
- [P3] D. Partyka, The maximal value of the function , Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 20 (1995), 49-55. Zbl0876.30015
- [QVV] S.-L. Qiu, M. K. Vamanamurthy and M. Vuorinen, Bounds for quasiconformal distortion functions, J. Math. Anal. Appl., to appear. Zbl0871.30019
- [SC] A. Selberg and S. Chowla, On Epstein's zeta-function, J. Reine Angew. Math. 227 (1967), 87-110. Zbl0166.05204
- [S1] L.-C. Shen, On some cubic modular identities, Proc. Amer. Math. Soc. 119 (1993), 203-208. Zbl0781.33008
- [S2] L.-C. Shen, On some modular equations of degree 5, ibid. 123 (1995), 1521-1526. Zbl0826.33011
- [VV] M. K. Vamanamurthy and M. Vuorinen, Functional inequalities, Jacobi products and quasiconformal maps, Illinois J. Math. 38 (1994), 394-419. Zbl0799.30011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.