Singular values, Ramanujan modular equations, and Landen transformations

M. Vuorinen

Studia Mathematica (1996)

  • Volume: 121, Issue: 3, page 221-230
  • ISSN: 0039-3223

Abstract

top
A new connection between geometric function theory and number theory is derived from Ramanujan’s work on modular equations. This connection involves the function φ K ( r ) recurrent in the theory of plane quasiconformal maps. Ramanujan’s modular identities yield numerous new functional identities for φ 1 / p ( r ) for various primes p.

How to cite

top

Vuorinen, M.. "Singular values, Ramanujan modular equations, and Landen transformations." Studia Mathematica 121.3 (1996): 221-230. <http://eudml.org/doc/216353>.

@article{Vuorinen1996,
abstract = {A new connection between geometric function theory and number theory is derived from Ramanujan’s work on modular equations. This connection involves the function $φ_K(r)$ recurrent in the theory of plane quasiconformal maps. Ramanujan’s modular identities yield numerous new functional identities for $φ_\{1/p\}(r)$ for various primes p.},
author = {Vuorinen, M.},
journal = {Studia Mathematica},
keywords = {plane quasiconformal maps; modulus of Grötzsch domain; complete elliptic integral; Landen transformation},
language = {eng},
number = {3},
pages = {221-230},
title = {Singular values, Ramanujan modular equations, and Landen transformations},
url = {http://eudml.org/doc/216353},
volume = {121},
year = {1996},
}

TY - JOUR
AU - Vuorinen, M.
TI - Singular values, Ramanujan modular equations, and Landen transformations
JO - Studia Mathematica
PY - 1996
VL - 121
IS - 3
SP - 221
EP - 230
AB - A new connection between geometric function theory and number theory is derived from Ramanujan’s work on modular equations. This connection involves the function $φ_K(r)$ recurrent in the theory of plane quasiconformal maps. Ramanujan’s modular identities yield numerous new functional identities for $φ_{1/p}(r)$ for various primes p.
LA - eng
KW - plane quasiconformal maps; modulus of Grötzsch domain; complete elliptic integral; Landen transformation
UR - http://eudml.org/doc/216353
ER -

References

top
  1. [AB] G. Almkvist and B. Berndt, Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π, and the Ladies Diary, Amer. Math. Monthly 95 (1988), 585-608. Zbl0665.26007
  2. [AV] G. D. Anderson and M. K. Vamanamurthy, Some properties of quasiconformal distortion functions, New Zealand J. Math. 24 (1995), 1-15. Zbl0857.30019
  3. [AVV1] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Functional inequalities for complete elliptic integrals and their ratios, SIAM J. Math. Anal. 21 (1990), 536-549. Zbl0692.33001
  4. [AVV2] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Inequalities for plane quasiconformal mappings, in: The Mathematical Heritage of Wilhelm Magnus - Groups, Geometry and Special Functions, W. Abikoff, J. S. Birman and K. Kuiken (eds.), Contemp. Math. 169, Amer. Math. Soc., 1994, 1-27. 
  5. [B] B. C. Berndt, Ramanujan Notebooks, Part III, Springer, Berlin, 1991. 
  6. [BBG] B. C. Berndt, S. Bhargava, and F. G. Garvan, Ramanujan's theories of elliptic functions to alternative bases, Trans. Amer. Math. Soc. 347 (1995), 4163-4244. Zbl0843.33012
  7. [BC] B. C. Berndt and H. H. Chan, Ramanujan's explicit values for the classical theta-functions, Mathematika 42 (1995), 278-294. Zbl0862.33016
  8. [BB] J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987. 
  9. [FK] H. M. Farkas and Y. Kopeliovich, New theta constant identities II, Proc. Amer. Math. Soc. 123 (1995), 1009-1020. Zbl0826.11018
  10. [H] G. H. Hardy, Ramanujan, Chelsea, New York, 1940. 
  11. [J] C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, 1829, Jacobi's Gesammelte Werke, Vol. 1, Berlin, 1881-1891. 
  12. [KZ] W. Kawa and J. Zając, Dynamical approximation of the distortion function Φ K , Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 20 (1995), 39-48. Zbl0876.30016
  13. [L] D. F. Lawden, Elliptic Functions and Applications, Springer, New York, 1989. Zbl0689.33001
  14. [LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed., Grundlehren Math. Wiss. 126, Springer, New York, 1973. Zbl0267.30016
  15. [P1] D. Partyka, Approximation of the Hersch-Pfluger distortion function. Applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 99-111. 
  16. [P2] D. Partyka, Approximation of the Hersch-Pfluger distortion function, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 343-354. Zbl0793.30013
  17. [P3] D. Partyka, The maximal value of the function [ 0 , 1 ] r Φ K 2 ( r ) - r , Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 20 (1995), 49-55. Zbl0876.30015
  18. [QVV] S.-L. Qiu, M. K. Vamanamurthy and M. Vuorinen, Bounds for quasiconformal distortion functions, J. Math. Anal. Appl., to appear. Zbl0871.30019
  19. [SC] A. Selberg and S. Chowla, On Epstein's zeta-function, J. Reine Angew. Math. 227 (1967), 87-110. Zbl0166.05204
  20. [S1] L.-C. Shen, On some cubic modular identities, Proc. Amer. Math. Soc. 119 (1993), 203-208. Zbl0781.33008
  21. [S2] L.-C. Shen, On some modular equations of degree 5, ibid. 123 (1995), 1521-1526. Zbl0826.33011
  22. [VV] M. K. Vamanamurthy and M. Vuorinen, Functional inequalities, Jacobi products and quasiconformal maps, Illinois J. Math. 38 (1994), 394-419. Zbl0799.30011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.