Initial value problem for the time dependent Schrödinger equation on the Heisenberg group

Jacek Zienkiewicz

Studia Mathematica (1997)

  • Volume: 122, Issue: 1, page 15-37
  • ISSN: 0039-3223

Abstract

top
Let L be the full laplacian on the Heisenberg group n of arbitrary dimension n. Then for f L 2 ( n ) such that ( I - L ) s / 2 f L 2 ( n ) , s > 3/4, for a ϕ C c ( n ) we have ʃ n | ϕ ( x ) | s u p 0 < t 1 | e ( - 1 ) t L f ( x ) | 2 d x C ϕ f W s 2 . On the other hand, the above maximal estimate fails for s < 1/4. If Δ is the sublaplacian on the Heisenberg group n , then for every s < 1 there exists a sequence f n L 2 ( n ) and C n > 0 such that ( I - L ) s / 2 f n L 2 ( n ) and for a ϕ C c ( n ) we have ʃ n | ϕ ( x ) | s u p 0 < t 1 | e ( - 1 ) t Δ f n ( x ) | 2 d x C n f n W s 2 , l i m n C n = + .

How to cite

top

Zienkiewicz, Jacek. "Initial value problem for the time dependent Schrödinger equation on the Heisenberg group." Studia Mathematica 122.1 (1997): 15-37. <http://eudml.org/doc/216357>.

@article{Zienkiewicz1997,
abstract = {Let L be the full laplacian on the Heisenberg group $ℍ^\{n\}$ of arbitrary dimension n. Then for $f ∈ L^\{2\}(ℍ^\{n\})$ such that $(I-L)^\{s/2\}f ∈ L^\{2\}(ℍ^\{n\})$, s > 3/4, for a $ϕ ∈ C_\{c\}(ℍ^\{n\})$ we have $ʃ_\{ℍ^\{n\}\} |ϕ(x)| sup_\{0 < t≤1\} |e^\{(√-1)tL\}f(x)|^\{2\} dx ≤ C_\{ϕ\} ∥f∥_\{W^\{s\}\}^\{2\}$. On the other hand, the above maximal estimate fails for s < 1/4. If Δ is the sublaplacian on the Heisenberg group $ℍ^\{n\}$, then for every s < 1 there exists a sequence $f_\{n\} ∈ L^\{2\}(ℍ^\{n\})$ and $C_\{n\} > 0$ such that $(I-L)^\{s/2\} f_\{n\} ∈ L^\{2\}(ℍ^\{n\})$ and for a $ϕ ∈ C_\{c\}(ℍ^\{n\})$ we have $ʃ_\{ℍ^\{n\}\} |ϕ(x)| sup_\{0 < t≤1\} |e^\{(√-1)tΔ\} f_\{n\}(x)|^\{2\} dx ≥ C_\{n\} ∥f_\{n\}∥_\{W^\{s\}\}^\{2\}, lim_\{n→∞\}C_\{n\} = +∞$.},
author = {Zienkiewicz, Jacek},
journal = {Studia Mathematica},
keywords = {Schrödinger equation; time dependent Hamiltonian; Sobolev spaces},
language = {eng},
number = {1},
pages = {15-37},
title = {Initial value problem for the time dependent Schrödinger equation on the Heisenberg group},
url = {http://eudml.org/doc/216357},
volume = {122},
year = {1997},
}

TY - JOUR
AU - Zienkiewicz, Jacek
TI - Initial value problem for the time dependent Schrödinger equation on the Heisenberg group
JO - Studia Mathematica
PY - 1997
VL - 122
IS - 1
SP - 15
EP - 37
AB - Let L be the full laplacian on the Heisenberg group $ℍ^{n}$ of arbitrary dimension n. Then for $f ∈ L^{2}(ℍ^{n})$ such that $(I-L)^{s/2}f ∈ L^{2}(ℍ^{n})$, s > 3/4, for a $ϕ ∈ C_{c}(ℍ^{n})$ we have $ʃ_{ℍ^{n}} |ϕ(x)| sup_{0 < t≤1} |e^{(√-1)tL}f(x)|^{2} dx ≤ C_{ϕ} ∥f∥_{W^{s}}^{2}$. On the other hand, the above maximal estimate fails for s < 1/4. If Δ is the sublaplacian on the Heisenberg group $ℍ^{n}$, then for every s < 1 there exists a sequence $f_{n} ∈ L^{2}(ℍ^{n})$ and $C_{n} > 0$ such that $(I-L)^{s/2} f_{n} ∈ L^{2}(ℍ^{n})$ and for a $ϕ ∈ C_{c}(ℍ^{n})$ we have $ʃ_{ℍ^{n}} |ϕ(x)| sup_{0 < t≤1} |e^{(√-1)tΔ} f_{n}(x)|^{2} dx ≥ C_{n} ∥f_{n}∥_{W^{s}}^{2}, lim_{n→∞}C_{n} = +∞$.
LA - eng
KW - Schrödinger equation; time dependent Hamiltonian; Sobolev spaces
UR - http://eudml.org/doc/216357
ER -

References

top
  1. [B] J. Bourgain, A remark on Schrödinger operators, Israel J. Math. 77 (1992), 1-16. Zbl0798.35131
  2. [Car] A. Carbery, Radial Fourier multipliers and associated maximal functions, in: Recent Progress in Fourier Analysis, North-Holland Math. Stud. 111, North-Holland, 1985, 49-56. 
  3. [C] L. Carleson, Some analytic problems related to statistical mechanics, in: Euclidean Harmonic Analysis, Lecture Notes in Math. 779, Springer, 1980, 5-45. 
  4. [Cw] M. Cowling, Pointwise behaviour of solutions to Schrödinger equations, in: Harmonic Analysis, Lecture Notes in Math. 992, Springer, 1983, 83-90. 
  5. [DK] B. E. J. Dahlberg and C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation, in: Harmonic Analysis, Lecture Notes in Math. 908, Springer, 1982, 205-209. 
  6. [E1] A. Erdélyi, Asymptotic forms for Laguerre polynomials, J. Indian Math. Soc. 24 (1960), 235-250. 
  7. [E2] A. Erdélyi, W. Magnus, F. Oberhettinger and G. F. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953. Zbl0051.30303
  8. [HR] A. Hulanicki and F. Ricci, A Tauberian theorem and tangential convergence of bounded harmonic functions on balls in n , Invent. Math. 62 (1980), 325-331. Zbl0449.31008
  9. [KPV1] C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69. Zbl0738.35022
  10. [KPV2] C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), 323-347. Zbl0737.35102
  11. [KR] C. E. Kenig and A. Ruiz, A strong type (2,2) estimate for a maximal operator associated to the Schrödinger equation, Trans. Amer. Math. Soc. 280 (1983), 239-246. Zbl0525.42011
  12. [M] D. Müller, A restriction theorem for the Heisenberg group, Ann. of Math. 131 (1990), 567-587. Zbl0731.43003
  13. [MR] D. Müller and F. Ricci, Analysis of second order differential operators on Heisenberg groups I, Invent. Math. 101 (1990), 545-582. Zbl0742.43006
  14. [NS] E. Nelson and W. F. Stinespring, Representations of elliptic operators in an enveloping algebra, Amer. J. Math. 81 (1959), 547-560. Zbl0092.32103
  15. [P] E. Prestini, Radial functions and regularity of solutions to the Schrödinger equation, Monatsh. Math. 109 (1990), 135-143. Zbl0777.42005
  16. [SS] P. Sjögren and P. Sjölin, Convergence properties for the time dependent Schrödinger equation, Ann. Acad. Sci. Fenn. Ser. AI Math. 14 (1989), 13-25. Zbl0629.35055
  17. [S1] P. Sjölin, Regularity of solutions to the Schrödinger equations, Duke Math. J. 55 (1987), 699-715. Zbl0631.42010
  18. [S2] P. Sjölin, Global maximal estimates for solutions to the Schrödinger equation, Studia Math. 110 (1994), 105-114. Zbl0829.42017
  19. [S3] P. Sjölin, Radial functions and maximal estimates for solutions to the Schrödinger equation, J. Austral. Math. Soc. 59 (1995), 134-142. Zbl0856.42013
  20. [Sz] G. Szegő, Orthogonal Polynomials, Colloq. Publ. 23, Amer. Math. Soc., 1939. 
  21. [V] L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874-878. Zbl0654.42014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.