Initial value problem for the time dependent Schrödinger equation on the Heisenberg group
Studia Mathematica (1997)
- Volume: 122, Issue: 1, page 15-37
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topZienkiewicz, Jacek. "Initial value problem for the time dependent Schrödinger equation on the Heisenberg group." Studia Mathematica 122.1 (1997): 15-37. <http://eudml.org/doc/216357>.
@article{Zienkiewicz1997,
abstract = {Let L be the full laplacian on the Heisenberg group $ℍ^\{n\}$ of arbitrary dimension n. Then for $f ∈ L^\{2\}(ℍ^\{n\})$ such that $(I-L)^\{s/2\}f ∈ L^\{2\}(ℍ^\{n\})$, s > 3/4, for a $ϕ ∈ C_\{c\}(ℍ^\{n\})$ we have $ʃ_\{ℍ^\{n\}\} |ϕ(x)| sup_\{0 < t≤1\} |e^\{(√-1)tL\}f(x)|^\{2\} dx ≤ C_\{ϕ\} ∥f∥_\{W^\{s\}\}^\{2\}$. On the other hand, the above maximal estimate fails for s < 1/4. If Δ is the sublaplacian on the Heisenberg group $ℍ^\{n\}$, then for every s < 1 there exists a sequence $f_\{n\} ∈ L^\{2\}(ℍ^\{n\})$ and $C_\{n\} > 0$ such that $(I-L)^\{s/2\} f_\{n\} ∈ L^\{2\}(ℍ^\{n\})$ and for a $ϕ ∈ C_\{c\}(ℍ^\{n\})$ we have $ʃ_\{ℍ^\{n\}\} |ϕ(x)| sup_\{0 < t≤1\} |e^\{(√-1)tΔ\} f_\{n\}(x)|^\{2\} dx ≥ C_\{n\} ∥f_\{n\}∥_\{W^\{s\}\}^\{2\}, lim_\{n→∞\}C_\{n\} = +∞$.},
author = {Zienkiewicz, Jacek},
journal = {Studia Mathematica},
keywords = {Schrödinger equation; time dependent Hamiltonian; Sobolev spaces},
language = {eng},
number = {1},
pages = {15-37},
title = {Initial value problem for the time dependent Schrödinger equation on the Heisenberg group},
url = {http://eudml.org/doc/216357},
volume = {122},
year = {1997},
}
TY - JOUR
AU - Zienkiewicz, Jacek
TI - Initial value problem for the time dependent Schrödinger equation on the Heisenberg group
JO - Studia Mathematica
PY - 1997
VL - 122
IS - 1
SP - 15
EP - 37
AB - Let L be the full laplacian on the Heisenberg group $ℍ^{n}$ of arbitrary dimension n. Then for $f ∈ L^{2}(ℍ^{n})$ such that $(I-L)^{s/2}f ∈ L^{2}(ℍ^{n})$, s > 3/4, for a $ϕ ∈ C_{c}(ℍ^{n})$ we have $ʃ_{ℍ^{n}} |ϕ(x)| sup_{0 < t≤1} |e^{(√-1)tL}f(x)|^{2} dx ≤ C_{ϕ} ∥f∥_{W^{s}}^{2}$. On the other hand, the above maximal estimate fails for s < 1/4. If Δ is the sublaplacian on the Heisenberg group $ℍ^{n}$, then for every s < 1 there exists a sequence $f_{n} ∈ L^{2}(ℍ^{n})$ and $C_{n} > 0$ such that $(I-L)^{s/2} f_{n} ∈ L^{2}(ℍ^{n})$ and for a $ϕ ∈ C_{c}(ℍ^{n})$ we have $ʃ_{ℍ^{n}} |ϕ(x)| sup_{0 < t≤1} |e^{(√-1)tΔ} f_{n}(x)|^{2} dx ≥ C_{n} ∥f_{n}∥_{W^{s}}^{2}, lim_{n→∞}C_{n} = +∞$.
LA - eng
KW - Schrödinger equation; time dependent Hamiltonian; Sobolev spaces
UR - http://eudml.org/doc/216357
ER -
References
top- [B] J. Bourgain, A remark on Schrödinger operators, Israel J. Math. 77 (1992), 1-16. Zbl0798.35131
- [Car] A. Carbery, Radial Fourier multipliers and associated maximal functions, in: Recent Progress in Fourier Analysis, North-Holland Math. Stud. 111, North-Holland, 1985, 49-56.
- [C] L. Carleson, Some analytic problems related to statistical mechanics, in: Euclidean Harmonic Analysis, Lecture Notes in Math. 779, Springer, 1980, 5-45.
- [Cw] M. Cowling, Pointwise behaviour of solutions to Schrödinger equations, in: Harmonic Analysis, Lecture Notes in Math. 992, Springer, 1983, 83-90.
- [DK] B. E. J. Dahlberg and C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation, in: Harmonic Analysis, Lecture Notes in Math. 908, Springer, 1982, 205-209.
- [E1] A. Erdélyi, Asymptotic forms for Laguerre polynomials, J. Indian Math. Soc. 24 (1960), 235-250.
- [E2] A. Erdélyi, W. Magnus, F. Oberhettinger and G. F. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953. Zbl0051.30303
- [HR] A. Hulanicki and F. Ricci, A Tauberian theorem and tangential convergence of bounded harmonic functions on balls in , Invent. Math. 62 (1980), 325-331. Zbl0449.31008
- [KPV1] C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69. Zbl0738.35022
- [KPV2] C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), 323-347. Zbl0737.35102
- [KR] C. E. Kenig and A. Ruiz, A strong type (2,2) estimate for a maximal operator associated to the Schrödinger equation, Trans. Amer. Math. Soc. 280 (1983), 239-246. Zbl0525.42011
- [M] D. Müller, A restriction theorem for the Heisenberg group, Ann. of Math. 131 (1990), 567-587. Zbl0731.43003
- [MR] D. Müller and F. Ricci, Analysis of second order differential operators on Heisenberg groups I, Invent. Math. 101 (1990), 545-582. Zbl0742.43006
- [NS] E. Nelson and W. F. Stinespring, Representations of elliptic operators in an enveloping algebra, Amer. J. Math. 81 (1959), 547-560. Zbl0092.32103
- [P] E. Prestini, Radial functions and regularity of solutions to the Schrödinger equation, Monatsh. Math. 109 (1990), 135-143. Zbl0777.42005
- [SS] P. Sjögren and P. Sjölin, Convergence properties for the time dependent Schrödinger equation, Ann. Acad. Sci. Fenn. Ser. AI Math. 14 (1989), 13-25. Zbl0629.35055
- [S1] P. Sjölin, Regularity of solutions to the Schrödinger equations, Duke Math. J. 55 (1987), 699-715. Zbl0631.42010
- [S2] P. Sjölin, Global maximal estimates for solutions to the Schrödinger equation, Studia Math. 110 (1994), 105-114. Zbl0829.42017
- [S3] P. Sjölin, Radial functions and maximal estimates for solutions to the Schrödinger equation, J. Austral. Math. Soc. 59 (1995), 134-142. Zbl0856.42013
- [Sz] G. Szegő, Orthogonal Polynomials, Colloq. Publ. 23, Amer. Math. Soc., 1939.
- [V] L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874-878. Zbl0654.42014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.