Four characterizations of scalar-type operators with spectrum in a half-line
Studia Mathematica (1997)
- Volume: 122, Issue: 1, page 39-54
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topVieten, Peter. "Four characterizations of scalar-type operators with spectrum in a half-line." Studia Mathematica 122.1 (1997): 39-54. <http://eudml.org/doc/216359>.
@article{Vieten1997,
abstract = {$C^0$-scalar-type spectrality criterions for operators A whose resolvent set contains the negative reals are provided. The criterions are given in terms of growth conditions on the resolvent of A and the semigroup generated by A. These criterions characterize scalar-type operators on the Banach space X if and only if X has no subspace isomorphic to the space of complex null-sequences.},
author = {Vieten, Peter},
journal = {Studia Mathematica},
keywords = {-scalar-type spectrality criteria; scalar-type operators},
language = {eng},
number = {1},
pages = {39-54},
title = {Four characterizations of scalar-type operators with spectrum in a half-line},
url = {http://eudml.org/doc/216359},
volume = {122},
year = {1997},
}
TY - JOUR
AU - Vieten, Peter
TI - Four characterizations of scalar-type operators with spectrum in a half-line
JO - Studia Mathematica
PY - 1997
VL - 122
IS - 1
SP - 39
EP - 54
AB - $C^0$-scalar-type spectrality criterions for operators A whose resolvent set contains the negative reals are provided. The criterions are given in terms of growth conditions on the resolvent of A and the semigroup generated by A. These criterions characterize scalar-type operators on the Banach space X if and only if X has no subspace isomorphic to the space of complex null-sequences.
LA - eng
KW - -scalar-type spectrality criteria; scalar-type operators
UR - http://eudml.org/doc/216359
ER -
References
top- [1] P. L. Butzer and H. Behrens, Semi-Groups of Operators and Approximation, Springer, Berlin, 1967.
- [2] R. deLaubenfels, Unbounded scalar operators on Banach lattices, Honam Math. J. 8 (1986), 1-19.
- [3] R. deLaubenfels, -scalar operators on cyclic spaces, Studia Math. 92 (1989), 49-58. Zbl0697.47034
- [4] R. deLaubenfels, Automatic extension of functional calculi, ibid. 114 (1995), 238-259.
- [5] R. deLaubenfels and I. Doust, Functional calculus, integral representations, and Banach space geometry, Quaestiones Math. 17 (1994), 161-171. Zbl0815.47042
- [6] R. deLaubenfels and S. Kantorovitz, Laplace and Laplace-Stieltjes space, J. Funct. Anal. 116 (1993), 1-61. Zbl0795.47026
- [7] R. deLaubenfels and S. Kantorovitz The semi-simplicity manifold for arbitrary Banach spaces, ibid. 113 (1995), 138-167. Zbl0867.47028
- [8] J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, 1977.
- [9] I. Doust, Well-bounded and scalar type spectral operators on spaces not containing , Proc. Amer. Math. Soc. 105 (1989), 376-370. Zbl0674.47022
- [10] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, London, 1978. Zbl0384.47001
- [11] N. Dunford and J. T. Schwartz, Linear Operators, Part III, Wiley-Interscience, New York, 1971.
- [12] J. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, Oxford, 1985.
- [13] R. Hughes and S. Kantorovitz, Spectral analysis of certain operator functions, J. Operator Theory 22 (1989), 243-265. Zbl0761.47020
- [14] S. Kantorovitz, Characterization of unbounded spectral operators with spectrum in a half-line, Comment. Math. Helv. 56 (1981), 163-178. Zbl0472.47021
- [15] W. Ricker, Characterization of Stieltjes transforms of vector measures and an application to spectral theory, Hokkaido Math. J. 13 (1984), 299-309. Zbl0577.47037
- [16] H. H. Schäfer, A generalized moment problem, Math. Ann. 146 (1962), 326-330. Zbl0102.09905
- [17] P. Vieten, Holomorphie und Laplace Transformation banachraumwertiger Funktionen, Shaker, Aachen, 1995.
- [18] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1941. Zbl0063.08245
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.