Hardy spaces of conjugate temperatures

Martha Guzmán-Partida

Studia Mathematica (1997)

  • Volume: 122, Issue: 2, page 153-165
  • ISSN: 0039-3223

Abstract

top
We define Hardy spaces of pairs of conjugate temperatures on + 2 using the equations introduced by Kochneff and Sagher. As in the holomorphic case, the Hilbert transform relates both components. We demonstrate that the boundary distributions of our Hardy spaces of conjugate temperatures coincide with the boundary distributions of Hardy spaces of holomorphic functions.

How to cite

top

Guzmán-Partida, Martha. "Hardy spaces of conjugate temperatures." Studia Mathematica 122.2 (1997): 153-165. <http://eudml.org/doc/216367>.

@article{Guzmán1997,
abstract = {We define Hardy spaces of pairs of conjugate temperatures on $ℝ_\{+\}^\{2\}$ using the equations introduced by Kochneff and Sagher. As in the holomorphic case, the Hilbert transform relates both components. We demonstrate that the boundary distributions of our Hardy spaces of conjugate temperatures coincide with the boundary distributions of Hardy spaces of holomorphic functions.},
author = {Guzmán-Partida, Martha},
journal = {Studia Mathematica},
keywords = {Hardy spaces; conjugate temperatures},
language = {eng},
number = {2},
pages = {153-165},
title = {Hardy spaces of conjugate temperatures},
url = {http://eudml.org/doc/216367},
volume = {122},
year = {1997},
}

TY - JOUR
AU - Guzmán-Partida, Martha
TI - Hardy spaces of conjugate temperatures
JO - Studia Mathematica
PY - 1997
VL - 122
IS - 2
SP - 153
EP - 165
AB - We define Hardy spaces of pairs of conjugate temperatures on $ℝ_{+}^{2}$ using the equations introduced by Kochneff and Sagher. As in the holomorphic case, the Hilbert transform relates both components. We demonstrate that the boundary distributions of our Hardy spaces of conjugate temperatures coincide with the boundary distributions of Hardy spaces of holomorphic functions.
LA - eng
KW - Hardy spaces; conjugate temperatures
UR - http://eudml.org/doc/216367
ER -

References

top
  1. [1] H. S. Bear, Hardy spaces of heat functions, Trans. Amer. Math. Soc. 301 (1987), 831-844. Zbl0633.31002
  2. [2] J. R. Cannon, The One-Dimensional Heat Equation, Encyclopedia Math. Appl. 23, Addison-Wesley, 1984. 
  3. [3] C. Fefferman and E. M. Stein, H p spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
  4. [4] T. M. Flett, Temperatures, Bessel potentials and Lipschitz spaces, Proc. London Math. Soc. (3) 22 (1971), 385-451. 
  5. [5] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Notas Mat. 116, North-Holland, Amsterdam, 1985. 
  6. [6] I. I. Hirschman and D. V. Widder, The Convolution Transform, Princeton University Press, 1955. Zbl0039.33202
  7. [7] E. Kochneff and Y. Sagher, Conjugate temperatures, J. Approx. Theory 70 (1992), 39-49. 
  8. [8] S. Pérez-Esteva, Hardy spaces of vector-valued heat functions, Houston J. Math. 19 (1993), 127-134. Zbl0806.46036
  9. [9] M. Riesz, L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math. 81 (1949), 1-223. 
  10. [10] E. M. Stein, Harmonic Analysis. Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, 1993. Zbl0821.42001
  11. [11] E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I. The theory of H p spaces, Acta Math. 103 (1960), 25-62. Zbl0097.28501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.