On log-subharmonicity of singular values of matrices

Bernard Aupetit

Studia Mathematica (1997)

  • Volume: 122, Issue: 2, page 195-200
  • ISSN: 0039-3223

Abstract

top
Let F be an analytic function from an open subset Ω of the complex plane into the algebra of n×n matrices. Denoting by s 1 , . . . , s n the decreasing sequence of singular values of a matrix, we prove that the functions l o g s 1 ( F ( λ ) ) + . . . + l o g s k ( F ( λ ) ) and l o g + s 1 ( F ( λ ) ) + . . . + l o g + s k ( F ( λ ) ) are subharmonic on Ω for 1 ≤ k ≤ n.

How to cite

top

Aupetit, Bernard. "On log-subharmonicity of singular values of matrices." Studia Mathematica 122.2 (1997): 195-200. <http://eudml.org/doc/216370>.

@article{Aupetit1997,
abstract = {Let F be an analytic function from an open subset Ω of the complex plane into the algebra of n×n matrices. Denoting by $s_1,...,s_n$ the decreasing sequence of singular values of a matrix, we prove that the functions $log s_\{1\}(F(λ)) + ... + log s_\{k\}(F(λ))$ and $log^\{+\}s_\{1\}(F(λ)) + ... + log^\{+\}s_\{k\}(F(λ))$ are subharmonic on Ω for 1 ≤ k ≤ n.},
author = {Aupetit, Bernard},
journal = {Studia Mathematica},
keywords = {Log-subharmonicity; singular values},
language = {eng},
number = {2},
pages = {195-200},
title = {On log-subharmonicity of singular values of matrices},
url = {http://eudml.org/doc/216370},
volume = {122},
year = {1997},
}

TY - JOUR
AU - Aupetit, Bernard
TI - On log-subharmonicity of singular values of matrices
JO - Studia Mathematica
PY - 1997
VL - 122
IS - 2
SP - 195
EP - 200
AB - Let F be an analytic function from an open subset Ω of the complex plane into the algebra of n×n matrices. Denoting by $s_1,...,s_n$ the decreasing sequence of singular values of a matrix, we prove that the functions $log s_{1}(F(λ)) + ... + log s_{k}(F(λ))$ and $log^{+}s_{1}(F(λ)) + ... + log^{+}s_{k}(F(λ))$ are subharmonic on Ω for 1 ≤ k ≤ n.
LA - eng
KW - Log-subharmonicity; singular values
UR - http://eudml.org/doc/216370
ER -

References

top
  1. [1] B. Aupetit, A Primer on Spectral Theory, Springer, New York, 1991. 
  2. [2] B. Aupetit et A. Iyamuremye, Sous-harmonicité de la partie de Riesz du spectre d'un opérateur, Ann. Sci. Math. Québec 12 (1988), 171-177. 
  3. [3] H. König, Eigenvalue Distribution of Compact Operators, Birkhäuser, Basel, 1986. 
  4. [4] O. Nevanlinna, A characteristic function for matrix valued meromorphic functions, Helsinki University of Technology, Institute of Mathematics Research Report A 355, 1995. Zbl0869.30024
  5. [5] O. Nevanlinna, Meromorphic resolvents and power bounded operators, Helsinki University of Technology, Institute of Mathematics Research Report A 358, 1996. Zbl0865.65034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.