Complementation in spaces of symmetric tensor products and polynomials

Fernando Blasco

Studia Mathematica (1997)

  • Volume: 123, Issue: 2, page 165-173
  • ISSN: 0039-3223

Abstract

top
For a locally convex space E we prove that the space of n-symmetric tensors is complemented in the space of (n+1)-symmetric tensors endowed with the projective topology. Applications and related results are also given.

How to cite

top

Blasco, Fernando. "Complementation in spaces of symmetric tensor products and polynomials." Studia Mathematica 123.2 (1997): 165-173. <http://eudml.org/doc/216385>.

@article{Blasco1997,
abstract = {For a locally convex space E we prove that the space of n-symmetric tensors is complemented in the space of (n+1)-symmetric tensors endowed with the projective topology. Applications and related results are also given.},
author = {Blasco, Fernando},
journal = {Studia Mathematica},
keywords = {symmetric tensor; polynomial; complementation; locally convex space; space of -symmetric tensors; projective topology},
language = {eng},
number = {2},
pages = {165-173},
title = {Complementation in spaces of symmetric tensor products and polynomials},
url = {http://eudml.org/doc/216385},
volume = {123},
year = {1997},
}

TY - JOUR
AU - Blasco, Fernando
TI - Complementation in spaces of symmetric tensor products and polynomials
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 2
SP - 165
EP - 173
AB - For a locally convex space E we prove that the space of n-symmetric tensors is complemented in the space of (n+1)-symmetric tensors endowed with the projective topology. Applications and related results are also given.
LA - eng
KW - symmetric tensor; polynomial; complementation; locally convex space; space of -symmetric tensors; projective topology
UR - http://eudml.org/doc/216385
ER -

References

top
  1. [1] J. M. Ansemil and S. Ponte, The compact open and the Nachbin ported topologies on spaces of holomorphic functions, Arch. Math. (Basel) 51 (1988), 65-70. Zbl0631.46028
  2. [2] J. M. Ansemil and J. Taskinen, On a problem of topologies in infinite dimensional holomorphy, ibid. 54 (1990), 61-64. Zbl0711.46032
  3. [3] R. M. Aron and M. Schottenloher, Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21 (1976), 7-30. Zbl0328.46046
  4. [4] A. Defant and M. Maestre, Property (BB) and holomorphic functions on Fréchet-Montel spaces, Math. Proc. Cambridge Philos. Soc. 115 (1993), 305-313. 
  5. [5] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, New York, 1981. Zbl0484.46044
  6. [6] S. Dineen, Holomorphic functions on Fréchet-Montel spaces, J. Math. Anal. Appl. 163 (1992), 581-587. Zbl0849.46031
  7. [7] S. Dineen, Holomorphic functions and the (BB)-property, Math. Scand. 74 (1994), 215-236. Zbl0870.46029
  8. [8] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, to appear. 
  9. [9] P. Galindo, D. García and M. Maestre, The coincidence of τ 0 and τ ω for spaces of holomorphic functions on some Fréchet-Montel spaces, Proc. Roy. Irish Acad. Sect. A 91 (1991), 137-143. Zbl0725.46025
  10. [10] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955). 
  11. [11] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. Zbl0466.46001
  12. [12] G. Köthe, Topological Vector Spaces I, Grundlehren Math. Wiss. 159, 2nd ed., Springer, New York, 1969. Zbl0179.17001
  13. [13] G. Köthe, Topological Vector Spaces II, Grundlehren Math. Wiss. 237, Springer, New York, 1979. Zbl0417.46001
  14. [14] R. A. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, Ph.D. Thesis Trinity College, Dublin, 1980. 
  15. [15] J. Taskinen, Counterexamples to "Problème des topologies" of Grothendieck, Ann. Acad. Sci. Fenn. Ser. A I Math. 63 (1986), 1-25. Zbl0612.46069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.