Boundary higher integrability for the gradient of distributional solutions of nonlinear systems

Daniela Giachetti; Rosanna Schianchi

Studia Mathematica (1997)

  • Volume: 123, Issue: 2, page 175-184
  • ISSN: 0039-3223

How to cite

top

Giachetti, Daniela, and Schianchi, Rosanna. "Boundary higher integrability for the gradient of distributional solutions of nonlinear systems." Studia Mathematica 123.2 (1997): 175-184. <http://eudml.org/doc/216386>.

@article{Giachetti1997,
abstract = {},
author = {Giachetti, Daniela, Schianchi, Rosanna},
journal = {Studia Mathematica},
keywords = {higher integrability; gradient; distributional solutions; Dirichlet problem; nonlinear elliptic systems},
language = {eng},
number = {2},
pages = {175-184},
title = {Boundary higher integrability for the gradient of distributional solutions of nonlinear systems},
url = {http://eudml.org/doc/216386},
volume = {123},
year = {1997},
}

TY - JOUR
AU - Giachetti, Daniela
AU - Schianchi, Rosanna
TI - Boundary higher integrability for the gradient of distributional solutions of nonlinear systems
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 2
SP - 175
EP - 184
AB -
LA - eng
KW - higher integrability; gradient; distributional solutions; Dirichlet problem; nonlinear elliptic systems
UR - http://eudml.org/doc/216386
ER -

References

top
  1. [1] H. Brezis, Analyse Fonctionnelle, théorie et applications, Masson, 1983. 
  2. [2] H. Federer, Geometric Measure Theory, Springer, Berlin, 1969. Zbl0176.00801
  3. [3] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud. 105, Princeton, 1983. 
  4. [4] M. Giaquinta and G. Modica, Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math. 311//312 (1979), 145-169. Zbl0409.35015
  5. [5] E. Giusti, Metodi diretti del calcolo delle variazioni, Unione Matematica Italiana, 1994. 
  6. [6] T. Iwaniec, p-harmonic tensors and quasiregular mappings, Ann. of Math. 136 (1992), 589-624. 
  7. [7] T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143-161. Zbl0802.35016
  8. [8] T. Iwaniec, C. Scott and B. Stroffolini, Nonlinear Hodge theory on manifolds with boundary, preprint. Zbl0963.58003
  9. [9] D. Giachetti, F. Leonetti and R. Schianchi, On the regularity of very weak minima, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 287-296. Zbl0851.49026
  10. [10] D. Giachetti, F. Leonetti and R. Schianchi, Boundary regularity and uniqueness for very weak A harmonic functions, in preparation. Zbl0926.35037
  11. [11] N. Meyers, An L p -estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa 17 (1963), 189-206. Zbl0127.31904
  12. [12] N. Meyers and A. Elcrat, Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions, Duke Math. J. 42 (1975), 121-136. Zbl0347.35039
  13. [13] G. Moscariello, Weak minima and quasiminima of variational integrals, Boll. Un. Mat. Ital., to appear. Zbl0890.49003
  14. [14] G. Moscariello, On weak minima of certain integral functionals, preprint. Zbl0920.49021
  15. [15] B. Stroffolini, On weakly A-harmonic tensors, Studia Math. 114 (1995), 289-301. Zbl0868.35015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.