Boundary higher integrability for the gradient of distributional solutions of nonlinear systems
Daniela Giachetti; Rosanna Schianchi
Studia Mathematica (1997)
- Volume: 123, Issue: 2, page 175-184
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topGiachetti, Daniela, and Schianchi, Rosanna. "Boundary higher integrability for the gradient of distributional solutions of nonlinear systems." Studia Mathematica 123.2 (1997): 175-184. <http://eudml.org/doc/216386>.
@article{Giachetti1997,
abstract = {},
author = {Giachetti, Daniela, Schianchi, Rosanna},
journal = {Studia Mathematica},
keywords = {higher integrability; gradient; distributional solutions; Dirichlet problem; nonlinear elliptic systems},
language = {eng},
number = {2},
pages = {175-184},
title = {Boundary higher integrability for the gradient of distributional solutions of nonlinear systems},
url = {http://eudml.org/doc/216386},
volume = {123},
year = {1997},
}
TY - JOUR
AU - Giachetti, Daniela
AU - Schianchi, Rosanna
TI - Boundary higher integrability for the gradient of distributional solutions of nonlinear systems
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 2
SP - 175
EP - 184
AB -
LA - eng
KW - higher integrability; gradient; distributional solutions; Dirichlet problem; nonlinear elliptic systems
UR - http://eudml.org/doc/216386
ER -
References
top- [1] H. Brezis, Analyse Fonctionnelle, théorie et applications, Masson, 1983.
- [2] H. Federer, Geometric Measure Theory, Springer, Berlin, 1969. Zbl0176.00801
- [3] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud. 105, Princeton, 1983.
- [4] M. Giaquinta and G. Modica, Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math. 311//312 (1979), 145-169. Zbl0409.35015
- [5] E. Giusti, Metodi diretti del calcolo delle variazioni, Unione Matematica Italiana, 1994.
- [6] T. Iwaniec, p-harmonic tensors and quasiregular mappings, Ann. of Math. 136 (1992), 589-624.
- [7] T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143-161. Zbl0802.35016
- [8] T. Iwaniec, C. Scott and B. Stroffolini, Nonlinear Hodge theory on manifolds with boundary, preprint. Zbl0963.58003
- [9] D. Giachetti, F. Leonetti and R. Schianchi, On the regularity of very weak minima, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 287-296. Zbl0851.49026
- [10] D. Giachetti, F. Leonetti and R. Schianchi, Boundary regularity and uniqueness for very weak A harmonic functions, in preparation. Zbl0926.35037
- [11] N. Meyers, An -estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa 17 (1963), 189-206. Zbl0127.31904
- [12] N. Meyers and A. Elcrat, Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions, Duke Math. J. 42 (1975), 121-136. Zbl0347.35039
- [13] G. Moscariello, Weak minima and quasiminima of variational integrals, Boll. Un. Mat. Ital., to appear. Zbl0890.49003
- [14] G. Moscariello, On weak minima of certain integral functionals, preprint. Zbl0920.49021
- [15] B. Stroffolini, On weakly A-harmonic tensors, Studia Math. 114 (1995), 289-301. Zbl0868.35015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.