Reflexivity of isometries
Studia Mathematica (1997)
- Volume: 124, Issue: 2, page 101-105
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topLi, Wing-Suet, and McCarthy, John. "Reflexivity of isometries." Studia Mathematica 124.2 (1997): 101-105. <http://eudml.org/doc/216400>.
@article{Li1997,
abstract = {We prove that any set of commuting isometries on a separable Hilbert space is reflexive.},
author = {Li, Wing-Suet, McCarthy, John},
journal = {Studia Mathematica},
keywords = {reflexivity; set of commuting isometries; separable Hilbert space},
language = {eng},
number = {2},
pages = {101-105},
title = {Reflexivity of isometries},
url = {http://eudml.org/doc/216400},
volume = {124},
year = {1997},
}
TY - JOUR
AU - Li, Wing-Suet
AU - McCarthy, John
TI - Reflexivity of isometries
JO - Studia Mathematica
PY - 1997
VL - 124
IS - 2
SP - 101
EP - 105
AB - We prove that any set of commuting isometries on a separable Hilbert space is reflexive.
LA - eng
KW - reflexivity; set of commuting isometries; separable Hilbert space
UR - http://eudml.org/doc/216400
ER -
References
top- [1] H. Bercovici, A factorization theorem with applications to invariant subspaces and the reflexivity of isometries, preprint. Zbl0833.47003
- [2] H. Bercovici and W. S. Li, Reflexivity of certain pairs of commuting isometries, preprint. Zbl0872.47002
- [3] J. B. Conway, The Theory of Subnormal Operators, Amer. Math. Soc., Providence, 1991. Zbl0743.47012
- [4] J. A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-512. Zbl0213.14304
- [5] D. Hadwin and E. Nordgren, Subalgebras of reflexive algebras, J. Operator Theory 7 (1982), 3-23. Zbl0483.47023
- [6] K. Horák and V. Müller, On commuting isometries, Czechoslovak Math. J. 43 (118) (1993), 373-382. Zbl0811.47040
- [7] J. E. McCarthy, Reflexivity of subnormal operators, Pacific J. Math. 161 (1993), 359-370. Zbl0792.47027
- [8] M. Ptak, Reflexivity of pairs of isometries, Studia Math. 83 (1986), 47-55.
- [9] M. Ptak, Erratum to the paper "Reflexivity of pairs of isometries", ibid. 103 (1992), 221-223.
- [10] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1996), 511-517. Zbl0171.33703
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.