Reflexivity of isometries

Wing-Suet Li; John McCarthy

Studia Mathematica (1997)

  • Volume: 124, Issue: 2, page 101-105
  • ISSN: 0039-3223

Abstract

top
We prove that any set of commuting isometries on a separable Hilbert space is reflexive.

How to cite

top

Li, Wing-Suet, and McCarthy, John. "Reflexivity of isometries." Studia Mathematica 124.2 (1997): 101-105. <http://eudml.org/doc/216400>.

@article{Li1997,
abstract = {We prove that any set of commuting isometries on a separable Hilbert space is reflexive.},
author = {Li, Wing-Suet, McCarthy, John},
journal = {Studia Mathematica},
keywords = {reflexivity; set of commuting isometries; separable Hilbert space},
language = {eng},
number = {2},
pages = {101-105},
title = {Reflexivity of isometries},
url = {http://eudml.org/doc/216400},
volume = {124},
year = {1997},
}

TY - JOUR
AU - Li, Wing-Suet
AU - McCarthy, John
TI - Reflexivity of isometries
JO - Studia Mathematica
PY - 1997
VL - 124
IS - 2
SP - 101
EP - 105
AB - We prove that any set of commuting isometries on a separable Hilbert space is reflexive.
LA - eng
KW - reflexivity; set of commuting isometries; separable Hilbert space
UR - http://eudml.org/doc/216400
ER -

References

top
  1. [1] H. Bercovici, A factorization theorem with applications to invariant subspaces and the reflexivity of isometries, preprint. Zbl0833.47003
  2. [2] H. Bercovici and W. S. Li, Reflexivity of certain pairs of commuting isometries, preprint. Zbl0872.47002
  3. [3] J. B. Conway, The Theory of Subnormal Operators, Amer. Math. Soc., Providence, 1991. Zbl0743.47012
  4. [4] J. A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-512. Zbl0213.14304
  5. [5] D. Hadwin and E. Nordgren, Subalgebras of reflexive algebras, J. Operator Theory 7 (1982), 3-23. Zbl0483.47023
  6. [6] K. Horák and V. Müller, On commuting isometries, Czechoslovak Math. J. 43 (118) (1993), 373-382. Zbl0811.47040
  7. [7] J. E. McCarthy, Reflexivity of subnormal operators, Pacific J. Math. 161 (1993), 359-370. Zbl0792.47027
  8. [8] M. Ptak, Reflexivity of pairs of isometries, Studia Math. 83 (1986), 47-55. 
  9. [9] M. Ptak, Erratum to the paper "Reflexivity of pairs of isometries", ibid. 103 (1992), 221-223. 
  10. [10] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1996), 511-517. Zbl0171.33703

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.