Approximation on the sphere by Besov analytic functions
Studia Mathematica (1997)
- Volume: 124, Issue: 2, page 179-192
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topDoubtsov, Evgueni. "Approximation on the sphere by Besov analytic functions." Studia Mathematica 124.2 (1997): 179-192. <http://eudml.org/doc/216407>.
@article{Doubtsov1997,
abstract = {Boundary values of zero-smooth Besov analytic functions in the unit ball of $ℂ^n$ are investigated. Bounded Besov functions with prescribed lower semicontinuous modulus are constructed. Correction theorems for continuous Besov functions are proved. An approximation problem on great circles is studied.},
author = {Doubtsov, Evgueni},
journal = {Studia Mathematica},
keywords = { spaces; space; Besov space; holomorphic functions; inner function behavior},
language = {eng},
number = {2},
pages = {179-192},
title = {Approximation on the sphere by Besov analytic functions},
url = {http://eudml.org/doc/216407},
volume = {124},
year = {1997},
}
TY - JOUR
AU - Doubtsov, Evgueni
TI - Approximation on the sphere by Besov analytic functions
JO - Studia Mathematica
PY - 1997
VL - 124
IS - 2
SP - 179
EP - 192
AB - Boundary values of zero-smooth Besov analytic functions in the unit ball of $ℂ^n$ are investigated. Bounded Besov functions with prescribed lower semicontinuous modulus are constructed. Correction theorems for continuous Besov functions are proved. An approximation problem on great circles is studied.
LA - eng
KW - spaces; space; Besov space; holomorphic functions; inner function behavior
UR - http://eudml.org/doc/216407
ER -
References
top- [A1] A. B. Aleksandrov, The existence of inner functions in the ball, Mat. Sb. 118 (160) (1982), 147-163 (in Russian); English transl.: Math. USSR-Sb. 46 (1983), 143-159. Zbl0503.32001
- [A2] A. B. Aleksandrov, Inner functions on compact spaces, Funktsional. Anal. i Prilozhen. 18 (2) (1984), 1-13 (in Russian); English transl.: Funct. Anal. Appl. 18 (2) (1984), 87-98.
- [A3] A. B. Aleksandrov, Function theory in the ball, in: Itogi Nauki i Tekhniki 8, VINITI, Moscow, 1985, 115-190 (in Russian); English transl.: G. M. Khenkin and A. G. Vitushkin (eds.), Encyclopaedia Math. Sci. 8 (Several Complex Variables II), Springer, Berlin, 1994, 107-178.
- [BB] F. Beatrous and J. Burbea, Sobolev spaces of holomorphic functions in the ball, Dissertationes Math. 276 (1989).
- [Do] E. Doubtsov, Corrected outer functions, Proc. Amer. Math. Soc., to appear.
- [Du1] Y. Dupain, Gradients des fonctions intérieures dans la boule unité de , Math. Z. 193 (1986), 85-94. Zbl0583.32013
- [Du2] Y. Dupain, Fonctions intérieures dans la boule unité de dont les fonctions traces sont aussi intérieures, ibid. 198 (1988), 191-206.
- [KM] B. Korenblum and J. E. McCarthy, The range of Toeplitz operators on the ball, Rev. Mat. Iberoamericana 12 (1996), 47-61. Zbl0941.47024
- [N] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967.
- [R1] W. Rudin, Function Theory in the Unit Ball of , Grundlehren Math. Wiss. 241, Springer, Berlin, 1980.
- [R2] W. Rudin, Inner functions in the unit ball of , J. Funct. Anal. 50 (1983), 100-126. Zbl0554.32002
- [R3] W. Rudin, New Constructions of Functions Holomorphic in the Unit Ball of , CBMS Regional Conf. Ser. in Math. 63, Amer. Math. Soc., Providence, R.I., 1986.
- [Ta] M. Tamm, Sur l'image par une fonction holomorphe bornée du bord d'un domaine pseudoconvexe, C. R. Acad. Sci. Paris 294 (1982), 537-540. Zbl0497.32003
- [To] B. Tomaszewski, Interpolation by Lipschitz holomorphic functions, Ark. Mat. 23 (1985), 327-338. Zbl0587.32009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.