Constructions of cocycles over irrational rotations

W. Bułatek; M. Lemańczyk; D. Rudolph

Studia Mathematica (1997)

  • Volume: 125, Issue: 1, page 1-11
  • ISSN: 0039-3223

Abstract

top
We construct a coboundary cocycle which is of bounded variation, is homotopic to the identity and is Hölder continuous with an arbitrary Hölder exponent smaller than 1.

How to cite

top

Bułatek, W., Lemańczyk, M., and Rudolph, D.. "Constructions of cocycles over irrational rotations." Studia Mathematica 125.1 (1997): 1-11. <http://eudml.org/doc/216418>.

@article{Bułatek1997,
abstract = {We construct a coboundary cocycle which is of bounded variation, is homotopic to the identity and is Hölder continuous with an arbitrary Hölder exponent smaller than 1.},
author = {Bułatek, W., Lemańczyk, M., Rudolph, D.},
journal = {Studia Mathematica},
keywords = {ergodic transformations; skew products; irrational rotations; cocycles},
language = {eng},
number = {1},
pages = {1-11},
title = {Constructions of cocycles over irrational rotations},
url = {http://eudml.org/doc/216418},
volume = {125},
year = {1997},
}

TY - JOUR
AU - Bułatek, W.
AU - Lemańczyk, M.
AU - Rudolph, D.
TI - Constructions of cocycles over irrational rotations
JO - Studia Mathematica
PY - 1997
VL - 125
IS - 1
SP - 1
EP - 11
AB - We construct a coboundary cocycle which is of bounded variation, is homotopic to the identity and is Hölder continuous with an arbitrary Hölder exponent smaller than 1.
LA - eng
KW - ergodic transformations; skew products; irrational rotations; cocycles
UR - http://eudml.org/doc/216418
ER -

References

top
  1. [1] H. Anzai, Ergodic skew product transformations on the torus, Osaka J. Math. 3 (1951), 83-99. Zbl0043.11203
  2. [2] H. Furstenberg, Strict ergodicity and transformations on the torus, Amer. J. Math. 83 (1961), 573-601. Zbl0178.38404
  3. [3] P. Gabriel, M. Lemańczyk et P. Liardet, Ensemble d'invariants pour les produits croisés de Anzai, Mem. Soc. Math. France 119 (1991). Zbl0754.28011
  4. [4] M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. IHES 49 (1979), 5-234. 
  5. [5] A. Iwanik, M. Lemańczyk and D. Rudolph, Absolutely continuous cocycles over irrational rotations, Israel J. Math. 83 (1993), 73-95. Zbl0786.28011
  6. [6] A. B. Katok, Constructions in Ergodic Theory, unpublished lecture notes. 
  7. [7] A. V. Kochergin, On the homology of functions over dynamical systems, Dokl. Akad. Nauk SSSR 231 (1976), 795-798. Zbl0414.28024
  8. [8] M. Lemańczyk and Ch. Mauduit, Ergodicity of a class of cocycles over irrational rotations, J. London Math. Soc. 49 (1994), 124-132. Zbl0801.28009
  9. [9] D. Rudolph, n and n cocycle extensions and complementary algebras, Ergodic Theory Dynam. Systems 6 (1986), 583-599. 
  10. [10] A. Zygmund, Trigonometric Series, Vol. I, Cambridge Univ. Press, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.