The density condition in quotients of quasinormable Fréchet spaces
Studia Mathematica (1997)
- Volume: 125, Issue: 2, page 131-141
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topAlbanese, Angela. "The density condition in quotients of quasinormable Fréchet spaces." Studia Mathematica 125.2 (1997): 131-141. <http://eudml.org/doc/216427>.
@article{Albanese1997,
abstract = {It is proved that a separable Fréchet space is quasinormable if, and only if, every quotient space satisfies the density condition of Heinrich. This answers positively a conjecture of Bonet and Dí az in the class of separable Fréchet spaces.},
author = {Albanese, Angela},
journal = {Studia Mathematica},
keywords = {separable Fréchet space; quasinormable; quotient space; density condition of Heinrich},
language = {eng},
number = {2},
pages = {131-141},
title = {The density condition in quotients of quasinormable Fréchet spaces},
url = {http://eudml.org/doc/216427},
volume = {125},
year = {1997},
}
TY - JOUR
AU - Albanese, Angela
TI - The density condition in quotients of quasinormable Fréchet spaces
JO - Studia Mathematica
PY - 1997
VL - 125
IS - 2
SP - 131
EP - 141
AB - It is proved that a separable Fréchet space is quasinormable if, and only if, every quotient space satisfies the density condition of Heinrich. This answers positively a conjecture of Bonet and Dí az in the class of separable Fréchet spaces.
LA - eng
KW - separable Fréchet space; quasinormable; quotient space; density condition of Heinrich
UR - http://eudml.org/doc/216427
ER -
References
top- [1] A. Aytuna, P. B. Djakov, A. P. Goncharov, T. Terzioğlu and V. P. Zahariuta, Some open problems in the theory of locally convex spaces, in: Linear Topological Spaces and Locally Complex Analysis I, A. Aytuna (ed.), Metu-Tübitak, Ankara, 1994, 147-164. Zbl0859.46002
- [2] S. F. Bellenot, Basic sequences in non-Schwartz Fréchet spaces, Trans. Amer. Math. Soc. 258 (1980), 199-216. Zbl0426.46001
- [3] S. F. Bellenot and E. Dubinsky, Fréchet spaces with nuclear Köthe quotients, ibid. 273 (1982), 579-594. Zbl0494.46001
- [4] K. D. Bierstedt and J. Bonet, Stefan Heinrich's density condition for Fréchet spaces and the characterization of distinguished Köthe echelon spaces, Math. Nachr. 135 (1988), 149-180. Zbl0688.46001
- [5] J. Bonet, A question of Valdivia on quasinormable Fréchet spaces, Canad. Math. Bull. 34 (1991), 301-304. Zbl0698.46002
- [6] J. Bonet and J. C. Díaz, Distinguished subspaces and quotients of Köthe echelon spaces, Bull. Polish Acad. Sci. Math. 39 (1991), 177-183. Zbl0777.46007
- [7] J. Bonet and J. C. Díaz, The density condition in subspaces and quotients of Fréchet spaces, Monatsh. Math. 117 (1994), 199-212. Zbl0804.46002
- [8] J. C. Díaz and C. Fernández, Quotients of Köthe sequence spaces of infinite order, Arch. Math. (Basel) 66 (1996), 207-213.
- [9] A. Grothendieck, Sur les espaces (F) and (DF), Summa Brasil. Math. 3 (1954), 57-123.
- [10] S. Heinrich, Ultrapowers of locally convex spaces and applications I, Math. Nachr. 118 (1984), 211-219.
- [11] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. Zbl0466.46001
- [12] G. Köthe, Topological Vector Spaces I, II, Springer, Berlin, 1969 and 1979. Zbl0179.17001
- [13] R. Meise and D. Vogt, A characterization of the quasi-normable Fréchet spaces, Math. Nachr. 122 (1985), 141-150. Zbl0583.46002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.