The density condition in quotients of quasinormable Fréchet spaces

Angela Albanese

Studia Mathematica (1997)

  • Volume: 125, Issue: 2, page 131-141
  • ISSN: 0039-3223

Abstract

top
It is proved that a separable Fréchet space is quasinormable if, and only if, every quotient space satisfies the density condition of Heinrich. This answers positively a conjecture of Bonet and Dí az in the class of separable Fréchet spaces.

How to cite

top

Albanese, Angela. "The density condition in quotients of quasinormable Fréchet spaces." Studia Mathematica 125.2 (1997): 131-141. <http://eudml.org/doc/216427>.

@article{Albanese1997,
abstract = {It is proved that a separable Fréchet space is quasinormable if, and only if, every quotient space satisfies the density condition of Heinrich. This answers positively a conjecture of Bonet and Dí az in the class of separable Fréchet spaces.},
author = {Albanese, Angela},
journal = {Studia Mathematica},
keywords = {separable Fréchet space; quasinormable; quotient space; density condition of Heinrich},
language = {eng},
number = {2},
pages = {131-141},
title = {The density condition in quotients of quasinormable Fréchet spaces},
url = {http://eudml.org/doc/216427},
volume = {125},
year = {1997},
}

TY - JOUR
AU - Albanese, Angela
TI - The density condition in quotients of quasinormable Fréchet spaces
JO - Studia Mathematica
PY - 1997
VL - 125
IS - 2
SP - 131
EP - 141
AB - It is proved that a separable Fréchet space is quasinormable if, and only if, every quotient space satisfies the density condition of Heinrich. This answers positively a conjecture of Bonet and Dí az in the class of separable Fréchet spaces.
LA - eng
KW - separable Fréchet space; quasinormable; quotient space; density condition of Heinrich
UR - http://eudml.org/doc/216427
ER -

References

top
  1. [1] A. Aytuna, P. B. Djakov, A. P. Goncharov, T. Terzioğlu and V. P. Zahariuta, Some open problems in the theory of locally convex spaces, in: Linear Topological Spaces and Locally Complex Analysis I, A. Aytuna (ed.), Metu-Tübitak, Ankara, 1994, 147-164. Zbl0859.46002
  2. [2] S. F. Bellenot, Basic sequences in non-Schwartz Fréchet spaces, Trans. Amer. Math. Soc. 258 (1980), 199-216. Zbl0426.46001
  3. [3] S. F. Bellenot and E. Dubinsky, Fréchet spaces with nuclear Köthe quotients, ibid. 273 (1982), 579-594. Zbl0494.46001
  4. [4] K. D. Bierstedt and J. Bonet, Stefan Heinrich's density condition for Fréchet spaces and the characterization of distinguished Köthe echelon spaces, Math. Nachr. 135 (1988), 149-180. Zbl0688.46001
  5. [5] J. Bonet, A question of Valdivia on quasinormable Fréchet spaces, Canad. Math. Bull. 34 (1991), 301-304. Zbl0698.46002
  6. [6] J. Bonet and J. C. Díaz, Distinguished subspaces and quotients of Köthe echelon spaces, Bull. Polish Acad. Sci. Math. 39 (1991), 177-183. Zbl0777.46007
  7. [7] J. Bonet and J. C. Díaz, The density condition in subspaces and quotients of Fréchet spaces, Monatsh. Math. 117 (1994), 199-212. Zbl0804.46002
  8. [8] J. C. Díaz and C. Fernández, Quotients of Köthe sequence spaces of infinite order, Arch. Math. (Basel) 66 (1996), 207-213. 
  9. [9] A. Grothendieck, Sur les espaces (F) and (DF), Summa Brasil. Math. 3 (1954), 57-123. 
  10. [10] S. Heinrich, Ultrapowers of locally convex spaces and applications I, Math. Nachr. 118 (1984), 211-219. 
  11. [11] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. Zbl0466.46001
  12. [12] G. Köthe, Topological Vector Spaces I, II, Springer, Berlin, 1969 and 1979. Zbl0179.17001
  13. [13] R. Meise and D. Vogt, A characterization of the quasi-normable Fréchet spaces, Math. Nachr. 122 (1985), 141-150. Zbl0583.46002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.