On convergence for the square root of the Poisson kernel in symmetric spaces of rank 1
Studia Mathematica (1997)
- Volume: 125, Issue: 3, page 219-229
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topRönning, Jan-Olav. "On convergence for the square root of the Poisson kernel in symmetric spaces of rank 1." Studia Mathematica 125.3 (1997): 219-229. <http://eudml.org/doc/216434>.
@article{Rönning1997,
abstract = {Let P(z,β) be the Poisson kernel in the unit disk , and let $P_\{λ\}f(z) = ʃ_\{∂\} P(z,φ)^\{1/2+λ\} f(φ)dφ$ be the λ -Poisson integral of f, where $f ∈ L^p(∂)$. We let $P_\{λ\}f$ be the normalization $P_\{λ\}f/P_\{λ\}1$. If λ >0, we know that the best (regular) regions where $P_\{λ\}f$ converges to f for a.a. points on ∂ are of nontangential type. If λ =0 the situation is different. In a previous paper, we proved a result concerning the convergence of $P_0f$ toward f in an $L^p$ weakly tangential region, if $f ∈ L^p(∂)$ and p > 1. In the present paper we will extend the result to symmetric spaces X of rank 1. Let f be an $L^p$ function on the maximal distinguished boundary K/M of X. Then $P_\{0\}f(x)$ will converge to f(kM) as x tends to kM in an $L^p$ weakly tangential region, for a.a. kM ∈ K/M.},
author = {Rönning, Jan-Olav},
journal = {Studia Mathematica},
keywords = {maximal function; square root of the Poisson kernel; convergence region; symmetric space of rank 1; convergence regions; maximal functions; weakly tangential region},
language = {eng},
number = {3},
pages = {219-229},
title = {On convergence for the square root of the Poisson kernel in symmetric spaces of rank 1},
url = {http://eudml.org/doc/216434},
volume = {125},
year = {1997},
}
TY - JOUR
AU - Rönning, Jan-Olav
TI - On convergence for the square root of the Poisson kernel in symmetric spaces of rank 1
JO - Studia Mathematica
PY - 1997
VL - 125
IS - 3
SP - 219
EP - 229
AB - Let P(z,β) be the Poisson kernel in the unit disk , and let $P_{λ}f(z) = ʃ_{∂} P(z,φ)^{1/2+λ} f(φ)dφ$ be the λ -Poisson integral of f, where $f ∈ L^p(∂)$. We let $P_{λ}f$ be the normalization $P_{λ}f/P_{λ}1$. If λ >0, we know that the best (regular) regions where $P_{λ}f$ converges to f for a.a. points on ∂ are of nontangential type. If λ =0 the situation is different. In a previous paper, we proved a result concerning the convergence of $P_0f$ toward f in an $L^p$ weakly tangential region, if $f ∈ L^p(∂)$ and p > 1. In the present paper we will extend the result to symmetric spaces X of rank 1. Let f be an $L^p$ function on the maximal distinguished boundary K/M of X. Then $P_{0}f(x)$ will converge to f(kM) as x tends to kM in an $L^p$ weakly tangential region, for a.a. kM ∈ K/M.
LA - eng
KW - maximal function; square root of the Poisson kernel; convergence region; symmetric space of rank 1; convergence regions; maximal functions; weakly tangential region
UR - http://eudml.org/doc/216434
ER -
References
top- [He78] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure Appl. Math. 80, Academic Press, 1978.
- [DR92] E. Damek and F. Ricci, Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal. 2 (1992), 213-248. Zbl0788.43008
- [Kor85] A. Korányi, Geometric properties of Heisenberg-type groups, Adv. Math. 56 (1985), 28-38. Zbl0589.53053
- [JOR] J.-O. Rönning, Convergence for square roots of Poisson kernels in weakly tangential regions, Math. Scand., to appear.
- [Sjö83] P. Sjögren, Fatou theorems and maximal functions for eigenfunctions of the Laplace-Beltrami operator in a bidisk, J. Reine Angew. Math. 345 (1983), 93-110. Zbl0512.43005
- [Sjö84] P. Sjögren, A Fatou theorem for eigenfunctions of the Laplace-Beltrami operator in a symmetric space, Duke Math. J. 51 (1984), 47-56. Zbl0543.43007
- [Sjö84a] P. Sjögren, Une remarque sur la convergence des fonctions propres du Laplacian à valeur propre critique, in: Lecture Notes in Math. 1096, Springer, 1984, 544-548.
- [Sjö88] P. Sjögren, Convergence for the square root of the Poisson kernel, Pacific J. Math. 131 (1988), 361-391. Zbl0601.31001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.