# A restriction theorem for the Heisenberg motion

P. Ratnakumar; Rama Rawat; S. Thangavelu

Studia Mathematica (1997)

- Volume: 126, Issue: 1, page 1-12
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topRatnakumar, P., Rawat, Rama, and Thangavelu, S.. "A restriction theorem for the Heisenberg motion." Studia Mathematica 126.1 (1997): 1-12. <http://eudml.org/doc/216441>.

@article{Ratnakumar1997,

abstract = {We prove a restriction theorem for the class-1 representations of the Heisenberg motion group. This is done using an improvement of the restriction theorem for the special Hermite projection operators proved in [13]. We also prove a restriction theorem for the Heisenberg group.},

author = {Ratnakumar, P., Rawat, Rama, Thangavelu, S.},

journal = {Studia Mathematica},

keywords = {Hermite function; special Hermite function; Laguerre function; class-1 representation; Heisenberg motion group; Stein-Tomas restriction theorem; class-1 representations; Hermite projection operators},

language = {eng},

number = {1},

pages = {1-12},

title = {A restriction theorem for the Heisenberg motion},

url = {http://eudml.org/doc/216441},

volume = {126},

year = {1997},

}

TY - JOUR

AU - Ratnakumar, P.

AU - Rawat, Rama

AU - Thangavelu, S.

TI - A restriction theorem for the Heisenberg motion

JO - Studia Mathematica

PY - 1997

VL - 126

IS - 1

SP - 1

EP - 12

AB - We prove a restriction theorem for the class-1 representations of the Heisenberg motion group. This is done using an improvement of the restriction theorem for the special Hermite projection operators proved in [13]. We also prove a restriction theorem for the Heisenberg group.

LA - eng

KW - Hermite function; special Hermite function; Laguerre function; class-1 representation; Heisenberg motion group; Stein-Tomas restriction theorem; class-1 representations; Hermite projection operators

UR - http://eudml.org/doc/216441

ER -

## References

top- [1] G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, Princeton, N.J., 1989. Zbl0682.43001
- [2] R. Gangolli, Spherical functions on semisimple Lie groups, in: Symmetric Spaces, W. Boothby and G. Weiss (eds.), Dekker, New York, 1972, 41-92. Zbl0252.43026
- [3] A. Hulanicki and F. Ricci, A Tauberian theorem and tangential convergence for bounded harmonic functions on balls in ${\u2102}^{n}$, Invent. Math. 62 (1980), 325-331. Zbl0449.31008
- [4] C. Markett, Mean Cesàro summability of Laguerre expansions and norm estimates with shifted parameter, Anal. Math. 8 (1982), 19-37. Zbl0515.42023
- [5] D. Müller, A restriction theorem for the Heisenberg group, Ann. of Math. 131 (1990), 567-587. Zbl0731.43003
- [6] D. Müller, On Riesz means of eigenfunction expansions for the Kohn-Laplacian, J. Reine Angew. Math. 401 (1989), 113-121. Zbl0697.35102
- [7] J. Peetre and G. Sparr, Interpolation and non-commutative integration, Ann. Mat. Pura Appl. 104 (1975), 187-207. Zbl0309.46031
- [8] R. Rawat, A theorem of the Wiener-Tauberian type for ${L}^{1}\left({H}^{n}\right)$, Proc. Indian Acad. Sci. Math. Sci. 106 (1996), 369-377.
- [9] C. Sogge, Oscillatory integrals and spherical harmonics, Duke Math. J. 53 (1986), 43-65.
- [10] C. Sogge, Concerning the ${L}^{p}$ norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988), 123-134. Zbl0641.46011
- [11] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993. Zbl0821.42001
- [12] R. Strichartz, ${L}^{p}$ harmonic analysis and Radon transforms on the Heisenberg group, J. Funct. Anal. 96 (1991), 350-406. Zbl0734.43004
- [13] S. Thangavelu, Weyl multipliers, Bochner-Riesz means and special Hermite expansions, Ark. Mat. 29 (1991), 307-321. Zbl0765.42009
- [14] S. Thangavelu, Restriction theorems for the Heisenberg group, J. Reine Angew. Math. 414 (1991), 51-65. Zbl0708.43003
- [15] S. Thangavelu, Some restriction theorems for the Heisenberg group, Studia Math. 99 (1991), 11-21. Zbl0747.43003
- [16] S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Math. Notes 42, Princeton Univ. Press, Princeton, N.J., 1993.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.