Minimal pairs of bounded closed convex sets
Studia Mathematica (1997)
- Volume: 126, Issue: 1, page 95-99
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topGrzybowski, J., and Urbański, R.. "Minimal pairs of bounded closed convex sets." Studia Mathematica 126.1 (1997): 95-99. <http://eudml.org/doc/216445>.
@article{Grzybowski1997,
abstract = {The existence of a minimal element in every equivalence class of pairs of bounded closed convex sets in a reflexive locally convex topological vector space is proved. An example of a non-reflexive Banach space with an equivalence class containing no minimal element is presented.},
author = {Grzybowski, J., Urbański, R.},
journal = {Studia Mathematica},
keywords = {convex analysis; pairs of convex sets; space of convex sets; minimal pair of sets},
language = {eng},
number = {1},
pages = {95-99},
title = {Minimal pairs of bounded closed convex sets},
url = {http://eudml.org/doc/216445},
volume = {126},
year = {1997},
}
TY - JOUR
AU - Grzybowski, J.
AU - Urbański, R.
TI - Minimal pairs of bounded closed convex sets
JO - Studia Mathematica
PY - 1997
VL - 126
IS - 1
SP - 95
EP - 99
AB - The existence of a minimal element in every equivalence class of pairs of bounded closed convex sets in a reflexive locally convex topological vector space is proved. An example of a non-reflexive Banach space with an equivalence class containing no minimal element is presented.
LA - eng
KW - convex analysis; pairs of convex sets; space of convex sets; minimal pair of sets
UR - http://eudml.org/doc/216445
ER -
References
top- [1] V. F. Dem'yanov and A. M. Rubinov, Quasidifferential Calculus, Optimization Software Inc., New York, 1986.
- [2] J. Grzybowski, Minimal pairs of compact convex sets, Arch. Math. (Basel) 63 (1994), 173-181. Zbl0804.52002
- [3] D. Pallaschke, S. Scholtes and R. Urbański, On minimal pairs of compact convex sets, Bull. Polish Acad. Sci. Math. 39 (1991), 1-5. Zbl0759.52003
- [4] S. Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematika 39 (1992), 267-273. Zbl0759.52004
- [5] R. Urbański, A generalization of the Minkowski-Rå dström-Hörmander theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 709-715. Zbl0336.46009
- [6] M. Wiernowolski, On amount of minimal pairs, Funct. Approx. Comment. Math. 23 (1994), 35-39. Zbl0838.52005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.