Extrapolation methods to solve non-autonomous retarded partial differential equations

Abdelaziz Rhandi

Studia Mathematica (1997)

  • Volume: 126, Issue: 3, page 219-233
  • ISSN: 0039-3223

Abstract

top
Using extrapolation spaces introduced by Da Prato-Grisvard and Nagel we prove a non-autonomous perturbation theorem for Hille-Yosida operators. The abstract result is applied to non-autonomous retarded partial differential equations.

How to cite

top

Rhandi, Abdelaziz. "Extrapolation methods to solve non-autonomous retarded partial differential equations." Studia Mathematica 126.3 (1997): 219-233. <http://eudml.org/doc/216452>.

@article{Rhandi1997,
abstract = {Using extrapolation spaces introduced by Da Prato-Grisvard and Nagel we prove a non-autonomous perturbation theorem for Hille-Yosida operators. The abstract result is applied to non-autonomous retarded partial differential equations.},
author = {Rhandi, Abdelaziz},
journal = {Studia Mathematica},
keywords = {extrapolation spaces; non-autonomous perturbation theorem for Hille-Yosida operators; non-autonomous retarded partial differential equations},
language = {eng},
number = {3},
pages = {219-233},
title = {Extrapolation methods to solve non-autonomous retarded partial differential equations},
url = {http://eudml.org/doc/216452},
volume = {126},
year = {1997},
}

TY - JOUR
AU - Rhandi, Abdelaziz
TI - Extrapolation methods to solve non-autonomous retarded partial differential equations
JO - Studia Mathematica
PY - 1997
VL - 126
IS - 3
SP - 219
EP - 233
AB - Using extrapolation spaces introduced by Da Prato-Grisvard and Nagel we prove a non-autonomous perturbation theorem for Hille-Yosida operators. The abstract result is applied to non-autonomous retarded partial differential equations.
LA - eng
KW - extrapolation spaces; non-autonomous perturbation theorem for Hille-Yosida operators; non-autonomous retarded partial differential equations
UR - http://eudml.org/doc/216452
ER -

References

top
  1. [Am] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Basel, 1995. 
  2. [Bu-Be] P. Butzer and H. Berens, Semigroups of Operators and Approximation, Springer, Berlin, 1967. 
  3. [Cl] P. Clément et al., One-Parameter Semigroups, CWI Monographs 5, Amsterdam, 1987. 
  4. [Cl1] P. Clément, O. Diekmann, M. Gyllenberg, H. J. A. M. Heijmans, and H. R. Thieme, Perturbation theory for dual semigroups. I. The sun-reflexive case, Math. Ann. 277 (1987), 709-725. Zbl0634.47039
  5. [Cl2] P. Clément, O. Diekmann, M. Gyllenberg, H. J. A. M. Heijmans and H. R. Thieme, Perturbation theory for dual semigroups. II. Time-dependent perturbations in the sun-reflexive case, Proc. Roy. Soc. Edinburgh Sect. A 109 (1988), 145-172. Zbl0661.47015
  6. [DaP-G] G. Da Prato and P. Grisvard, On extrapolation spaces, Rend. Accad. Naz. Lincei 72 (1982), 330-332. Zbl0527.46055
  7. [Da-Sch-Zh] W. Desch, W. Schappacher, and K. P. Zhang, Semilinear evolution equations, Houston J. Math. 15 (1989), 527-552. Zbl0712.47052
  8. [Di-vGi-Lu-Wa] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations, Functional-, Complex- and Nonlinear Analysis, Springer, 1995. 
  9. [Go] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985. 
  10. [Ha] J. K. Hale, Theory of Functional Differential Equations, Springer, 1977. 
  11. [Hi-Ph] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957. 
  12. [Li] J. L. Lions, Théorèmes de trace et d'interpolation, I, Ann. Scuola Norm. Sup. Pisa 13 (1959), 389-403. 
  13. [Lu] A. Lunardi, Interpolation spaces between domains of elliptic operators and spaces of continuous functions with applications to nonlinear parabolic equations, Math. Nachr. 121 (1985), 295-318. Zbl0568.47035
  14. [Lu1] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995. 
  15. [Na] R. Nagel (ed.), One-Parameter Semigroups of Positive Operators, Lecture Notes in Math. 1184, Springer, 1986. Zbl0585.47030
  16. [Na1] R. Nagel (ed.), Sobolev spaces and semigroups, Semesterbericht Funktionalanalysis Tübingen (Sommersemester 1983), 1-19. 
  17. [Na2] R. Nagel and E. Sinestrari, Inhomogeneous Volterra integrodifferential equations for Hille-Yosida operators, in: Lecture Notes in Pure and Appl. Math. 150, Marcel Dekker, 1994, 51-70. 
  18. [vNe] J. van Neerven, The Adjoint of a Semigroup of Linear Operators, Lecture Notes in Math. 1529, Springer, 1992. Zbl0780.47026
  19. [Ni-Rh] G. Nickel and A. Rhandi, On the essential spectral radius of semigroups generated by perturbations of Hille-Yosida operators, Differential Integral Equations, to appear. 
  20. [Pa] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983. Zbl0516.47023
  21. [Ta] H. Tanabe, Equations of Evolution, Pitman, London, 1979. 
  22. [Wa] T. Walther, Störungstheorie von Generatoren und Favard-Klassen, Dissertation, Tübingen, 1986. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.