Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces

D. Edmunds; Yu. Netrusov

Studia Mathematica (1998)

  • Volume: 128, Issue: 1, page 71-102
  • ISSN: 0039-3223

Abstract

top
Let id be the natural embedding of the Sobolev space W p l ( Ω ) in the Zygmund space L q ( l o g L ) a ( Ω ) , where Ω = ( 0 , 1 ) n , 1 < p < ∞, l ∈ ℕ, 1/p = 1/q + l/n and a < 0, a ≠ -l/n. We consider the entropy numbers e k ( i d ) of this embedding and show that e k ( i d ) k - η , where η = min(-a,l/n). Extensions to more general spaces are given. The results are applied to give information about the behaviour of the eigenvalues of certain operators of elliptic type.

How to cite

top

Edmunds, D., and Netrusov, Yu.. "Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces." Studia Mathematica 128.1 (1998): 71-102. <http://eudml.org/doc/216476>.

@article{Edmunds1998,
abstract = {Let id be the natural embedding of the Sobolev space $W_p^l(Ω)$ in the Zygmund space $L_q(log L)_a(Ω)$, where $Ω = (0,1)^n$, 1 < p < ∞, l ∈ ℕ, 1/p = 1/q + l/n and a < 0, a ≠ -l/n. We consider the entropy numbers $e_k(id)$ of this embedding and show that $e_k(id) ≍ k^\{-η\}$, where η = min(-a,l/n). Extensions to more general spaces are given. The results are applied to give information about the behaviour of the eigenvalues of certain operators of elliptic type.},
author = {Edmunds, D., Netrusov, Yu.},
journal = {Studia Mathematica},
keywords = {embedding; Sobolev space; Zygmund space; entropy numbers; eigenvalues; operators of elliptic type},
language = {eng},
number = {1},
pages = {71-102},
title = {Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces},
url = {http://eudml.org/doc/216476},
volume = {128},
year = {1998},
}

TY - JOUR
AU - Edmunds, D.
AU - Netrusov, Yu.
TI - Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces
JO - Studia Mathematica
PY - 1998
VL - 128
IS - 1
SP - 71
EP - 102
AB - Let id be the natural embedding of the Sobolev space $W_p^l(Ω)$ in the Zygmund space $L_q(log L)_a(Ω)$, where $Ω = (0,1)^n$, 1 < p < ∞, l ∈ ℕ, 1/p = 1/q + l/n and a < 0, a ≠ -l/n. We consider the entropy numbers $e_k(id)$ of this embedding and show that $e_k(id) ≍ k^{-η}$, where η = min(-a,l/n). Extensions to more general spaces are given. The results are applied to give information about the behaviour of the eigenvalues of certain operators of elliptic type.
LA - eng
KW - embedding; Sobolev space; Zygmund space; entropy numbers; eigenvalues; operators of elliptic type
UR - http://eudml.org/doc/216476
ER -

References

top
  1. [BeS] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988. Zbl0647.46057
  2. [BiS1] M. S. Birman and M. Z. Solomyak, Piecewise polynomial approximations of functions of the class W p α , Mat. Sb. 73 (1967), 331-355 (in Russian); English transl.: Math. USSR-Sb. (1967), 295-317. Zbl0173.16001
  3. [BiS2] M. S. Birman and M. Z. Solomyak, Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations, in: Adv. Soviet Math. 7, Amer. Math. Soc., 1991, 1-55. Zbl0749.35026
  4. [ET] D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators, Cambridge Univ. Press, Cambridge, 1996. Zbl0865.46020
  5. [FJ] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170. Zbl0716.46031
  6. [KT] A. N. Kolmogorov and V. M. Tikhomirov, ε-entropy and ε-capacity of sets in functional spaces, Uspekhi Mat. Nauk 14 (2) (1959), 3-86 (in Russian); English transl.: Amer. Math. Soc. Transl. Ser. 2 17 (1961), 277-364. 
  7. [L] G. G. Lorentz, The 13th problem of Hilbert, in: Mathematical Developments Arising from Hilbert Problems, Proc. Sympos. Pure Math. 28, Amer. Math. Soc., 1976, 419-430. 
  8. [N1] Yu. V. Netrusov, Embedding theorems for Lizorkin-Triebel spaces, Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 159 (1987), 103-112 (in Russian); English transl.: Soviet Math. 47 (1989), 2896-2903. Zbl0627.46038
  9. [N2] Yu. V. Netrusov, The exceptional sets of functions from Besov and Lizorkin-Triebel spaces, Trudy Mat. Inst. Steklov. 187 (1989), 162-177 (in Russian); English transl.: Proc. Steklov Inst. Math. 187 (1990), 185-203. 
  10. [T] H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992. Zbl0763.46025
  11. [V] A. G. Vitushkin, Estimation of the Complexity of the Tabulation Problem, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1959 (in Russian); English transl.: Theory of the Transmission and Processing of Information, Pergamon Press, New York, 1961. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.