Dominated ergodic theorems in rearrangement invariant spaces
Michael Braverman; Ben-Zion Rubshtein; Alexander Veksler
Studia Mathematica (1998)
- Volume: 128, Issue: 2, page 145-157
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBraverman, Michael, Rubshtein, Ben-Zion, and Veksler, Alexander. "Dominated ergodic theorems in rearrangement invariant spaces." Studia Mathematica 128.2 (1998): 145-157. <http://eudml.org/doc/216480>.
@article{Braverman1998,
abstract = {We study conditions under which Dominated Ergodic Theorems hold in rearrangement invariant spaces. Consequences for Orlicz and Lorentz spaces are given. In particular, our results generalize the classical theorems for the spaces $L_p$ and the classes $L log^nL$.},
author = {Braverman, Michael, Rubshtein, Ben-Zion, Veksler, Alexander},
journal = {Studia Mathematica},
keywords = {rearrangement invariant space; ergodic theorem; Hardy-Littlewood property; dominated ergodic theorems; rearrangement invariant spaces; Orlicz and Lorentz spaces},
language = {eng},
number = {2},
pages = {145-157},
title = {Dominated ergodic theorems in rearrangement invariant spaces},
url = {http://eudml.org/doc/216480},
volume = {128},
year = {1998},
}
TY - JOUR
AU - Braverman, Michael
AU - Rubshtein, Ben-Zion
AU - Veksler, Alexander
TI - Dominated ergodic theorems in rearrangement invariant spaces
JO - Studia Mathematica
PY - 1998
VL - 128
IS - 2
SP - 145
EP - 157
AB - We study conditions under which Dominated Ergodic Theorems hold in rearrangement invariant spaces. Consequences for Orlicz and Lorentz spaces are given. In particular, our results generalize the classical theorems for the spaces $L_p$ and the classes $L log^nL$.
LA - eng
KW - rearrangement invariant space; ergodic theorem; Hardy-Littlewood property; dominated ergodic theorems; rearrangement invariant spaces; Orlicz and Lorentz spaces
UR - http://eudml.org/doc/216480
ER -
References
top- [AM90] M. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (1990), 727-735. Zbl0716.42016
- [B93] M. Braverman, On a class of operators, J. London Math. Soc. 47 (1993), 119-128. Zbl0732.47033
- [BM77] M. Braverman and A. Mekler, On the Hardy-Littlewood property of symmetric spaces, Siberian Math. J. 18 (1977), 371-385. Zbl0411.46016
- [C66] A. P. Calderón, Spaces between and and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299.
- [Do53] J. L. Doob, Stochastic Processes, Wiley, New York, 1953.
- [De73] Y. Derriennic, On integrability of the supremum of ergodic ratios, Ann. Probab. 1 (1973), 338-340. Zbl0263.28015
- [DS58] N. Dunford and J. Schwartz, Linear Operators, part I, Interscience, New York, 1958.
- [ES92] G. A. Edgar and L. Sucheston, Stopping Times and Directed Processes, Encyclopedia Math. Appl., Cambridge Univ. Press, 1992. Zbl0779.60032
- [G86] D. Gilat, The best bound in the L logL inequality of Hardy and Littlewood and its martingale counterpart, Proc. Amer. Math. Soc. 97 (1986), 429-436.
- [KR61] M. A. Krasnosel'skiĭ and Ya. B. Rutitskiĭ, Convex Functions and Orlicz Spaces, Noordhoff, 1961.
- [KPS82] S. G. Krein, Yu. Petunin and E. Semenov, Interpolation of Linear Operators, Transl. Math. Monographs 54, Amer. Math. Soc., Providence, 1982.
- [K85] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math., de Gruyter, Berlin, 1985.
- [LT79] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. Function Spaces, Springer, 1979. Zbl0403.46022
- [M65] B. S. Mityagin, An interpolation theorem for modular spaces, Mat. Sb. 66 (1965), 473-482 (in Russian).
- [O71] D. S. Ornstein, A remark on the Birkhoff ergodic theorem, Illinois J. Math. 15 (1971), 77-79. Zbl0212.40102
- [Sa90] E. T. Sawyer, Boundedness of classical operators in classical Lorentz spaces, Studia Math. 96 (1990), 145-158. Zbl0705.42014
- [SW71] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.
- [St93] V. D. Stepanov, The weighted Hardy's inequality for nonincreasing functions, Trans. Amer. Math. Soc. 338 (1993), 173-186. Zbl0786.26015
- [V85] A. Veksler, An ergodic theorem in symmetric spaces, Sibirsk. Mat. Zh. 24 (1985), 189-191 (in Russian). Zbl0603.28017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.