Convex sets in Banach spaces and a problem of Rolewicz

A. Granero; M. Jiménez Sevilla; J. Moreno

Studia Mathematica (1998)

  • Volume: 129, Issue: 1, page 19-29
  • ISSN: 0039-3223

Abstract

top
Let B x be the set of all closed, convex and bounded subsets of a Banach space X equipped with the Hausdorff metric. In the first part of this work we study the density character of B x and investigate its connections with the geometry of the space, in particular with a property shared by the spaces of Shelah and Kunen. In the second part we are concerned with the problem of Rolewicz, namely the existence of support sets, for the case of spaces C(K).

How to cite

top

Granero, A., Jiménez Sevilla, M., and Moreno, J.. "Convex sets in Banach spaces and a problem of Rolewicz." Studia Mathematica 129.1 (1998): 19-29. <http://eudml.org/doc/216488>.

@article{Granero1998,
abstract = {Let $B_x$ be the set of all closed, convex and bounded subsets of a Banach space X equipped with the Hausdorff metric. In the first part of this work we study the density character of $B_x$ and investigate its connections with the geometry of the space, in particular with a property shared by the spaces of Shelah and Kunen. In the second part we are concerned with the problem of Rolewicz, namely the existence of support sets, for the case of spaces C(K).},
author = {Granero, A., Jiménez Sevilla, M., Moreno, J.},
journal = {Studia Mathematica},
keywords = {Hausdorff metric; density character; existence of support sets},
language = {eng},
number = {1},
pages = {19-29},
title = {Convex sets in Banach spaces and a problem of Rolewicz},
url = {http://eudml.org/doc/216488},
volume = {129},
year = {1998},
}

TY - JOUR
AU - Granero, A.
AU - Jiménez Sevilla, M.
AU - Moreno, J.
TI - Convex sets in Banach spaces and a problem of Rolewicz
JO - Studia Mathematica
PY - 1998
VL - 129
IS - 1
SP - 19
EP - 29
AB - Let $B_x$ be the set of all closed, convex and bounded subsets of a Banach space X equipped with the Hausdorff metric. In the first part of this work we study the density character of $B_x$ and investigate its connections with the geometry of the space, in particular with a property shared by the spaces of Shelah and Kunen. In the second part we are concerned with the problem of Rolewicz, namely the existence of support sets, for the case of spaces C(K).
LA - eng
KW - Hausdorff metric; density character; existence of support sets
UR - http://eudml.org/doc/216488
ER -

References

top
  1. [1] J. M. Borwein and J. D. Vanderwerff, Banach spaces that admit support sets, Proc. Amer. Math. Soc. 124 (1996), 751-755. Zbl0840.46005
  2. [2] M. Džamonja and K. Kunen, Properties of the class of measure separable compact spaces, Fund. Math. 147 (1995), 261-277. Zbl1068.28502
  3. [3] C. Finet and G. Godefroy, Biorthogonal systems and big quotient spaces, in: Contemp. Math. 85, Amer. Math. Soc., 1989, 87-110. Zbl0684.46016
  4. [4] J. R. Giles, D. A. Gregory and B. Sims, Characterization of normed linear spaces with Mazur's intersection property, Bull. Austral. Math. Soc. 18 (1978), 471-476. Zbl0373.46028
  5. [5] G. Godefroy, Nicely smooth Banach spaces, in: Functional Analysis Seminar, The University of Texas at Austin, 1984-1985. 
  6. [6] G. Godefroy, Compacts de Rosenthal, Pacific J. Math. 91 (1980), 293-306. 
  7. [7] B. V. Godun and S. L. Troyanski, Renorming Banach spaces with fundamental biorthogonal systems, in: Contemp. Math. 144, Amer. Math. Soc., 1993, 119-126. Zbl0801.46008
  8. [8] M. Jiménez Sevilla and J. P. Moreno, The Mazur intersection property and Asplund spaces, C. R. Acad. Sci. Paris Sér. I 321 (1995), 1219-1223. Zbl0836.46011
  9. [9] M. Jiménez Sevilla and J. P. Moreno, Renorming Banach spaces with the Mazur intersection property, J. Funct. Anal. 144 (1997), 486-504. Zbl0898.46008
  10. [10] M. Jiménez Sevilla and J. P. Moreno, On denseness of certain norms in Banach spaces, Bull. Austral. Math. Soc. 54 (1996), 183-196. Zbl0866.46007
  11. [11] K. Kuratowski, Topology I, Academic Press, New York and London, 1966. 
  12. [12] D. N. Kutzarova, Convex sets containing only support points in Banach spaces with an uncountable minimal system, C. R. Acad. Bulg. Sci. 39 (12) (1986), 13-14. Zbl0632.46012
  13. [13] H. E. Lacey, The Isometric Theory of Classical Banach spaces, Springer, 1974. Zbl0285.46024
  14. [14] A. J. Lazar, Points of support for closed convex sets, Illinois J. Math. 25 (1981), 302-305. Zbl0437.46008
  15. [15] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II: Function Spaces, Springer, Berlin, 1979. Zbl0403.46022
  16. [16] S. Mazur, Über schwache Konvergenz in den Räumen L p , Studia Math. 4 (1933), 128-133. Zbl59.1076.01
  17. [17] V. Montesinos, Solution to a problem of S. Rolewicz, ibid. 81 (1985), 65-69. Zbl0526.46016
  18. [18] S. Negrepontis, Banach spaces and topology, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 1045-1142. 
  19. [19] A. N. Plichko, A Banach space without a fundamental biorthogonal system, Soviet Math. Dokl. 22 (1980), 450-453. Zbl0513.46015
  20. [20] S. Rolewicz, On convex sets containing only points of support, Comment. Math., Tomus specialis in honorem Ladislai Orlicz, I, 1978, 279-281. 
  21. [21] W. Schachermayer, Norm attaining operators and renormings of Banach spaces, Israel J. Math. 44 (1983), 201-212. Zbl0542.46013
  22. [22] A. Sersouri, w-independence in non-separable Banach spaces, in: Contemp. Math. 85, Amer. Math. Soc., 1989, 509-512. 
  23. [23] S. Shelah, Uncountable constructions for B. A., e.c. and Banach spaces, Israel J. Math. 51 (1985), 273-297. Zbl0589.03012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.