The Grothendieck-Pietsch domination principle for nonlinear summing integral operators

Karl Lermer

Studia Mathematica (1998)

  • Volume: 129, Issue: 2, page 97-112
  • ISSN: 0039-3223

Abstract

top
We transform the concept of p-summing operators, 1≤ p < ∞, to the more general setting of nonlinear Banach space operators. For 1-summing operators on B(Σ,X)-spaces having weak integral representations we generalize the Grothendieck-Pietsch domination principle. This is applied for the characterization of 1-summing Hammerstein operators on C(S,X)-spaces. For p-summing Hammerstein operators we derive the existence of control measures and p-summing extensions to B(Σ,X)-spaces.

How to cite

top

Lermer, Karl. "The Grothendieck-Pietsch domination principle for nonlinear summing integral operators." Studia Mathematica 129.2 (1998): 97-112. <http://eudml.org/doc/216499>.

@article{Lermer1998,
abstract = {We transform the concept of p-summing operators, 1≤ p < ∞, to the more general setting of nonlinear Banach space operators. For 1-summing operators on B(Σ,X)-spaces having weak integral representations we generalize the Grothendieck-Pietsch domination principle. This is applied for the characterization of 1-summing Hammerstein operators on C(S,X)-spaces. For p-summing Hammerstein operators we derive the existence of control measures and p-summing extensions to B(Σ,X)-spaces.},
author = {Lermer, Karl},
journal = {Studia Mathematica},
keywords = {-summing operators; nonlinear Banach space operators; Grothendieck-Pietsch domination principle; 1-summing Hammerstein operators; control measures; -summing extensions},
language = {eng},
number = {2},
pages = {97-112},
title = {The Grothendieck-Pietsch domination principle for nonlinear summing integral operators},
url = {http://eudml.org/doc/216499},
volume = {129},
year = {1998},
}

TY - JOUR
AU - Lermer, Karl
TI - The Grothendieck-Pietsch domination principle for nonlinear summing integral operators
JO - Studia Mathematica
PY - 1998
VL - 129
IS - 2
SP - 97
EP - 112
AB - We transform the concept of p-summing operators, 1≤ p < ∞, to the more general setting of nonlinear Banach space operators. For 1-summing operators on B(Σ,X)-spaces having weak integral representations we generalize the Grothendieck-Pietsch domination principle. This is applied for the characterization of 1-summing Hammerstein operators on C(S,X)-spaces. For p-summing Hammerstein operators we derive the existence of control measures and p-summing extensions to B(Σ,X)-spaces.
LA - eng
KW - -summing operators; nonlinear Banach space operators; Grothendieck-Pietsch domination principle; 1-summing Hammerstein operators; control measures; -summing extensions
UR - http://eudml.org/doc/216499
ER -

References

top
  1. [1] J. Batt, Nonlinear integral operators on C(S,E), Studia Math. 48 (1973), 147-181. 
  2. [2] J. Batt and J. Berg, Linear bounded transformations on the space of continuous functions, J. Funct. Anal. 4 (1969), 215-239. Zbl0183.13502
  3. [3] F. Bombal, Operators on spaces of vector valued continuous functions, Extracta Math. 1 (1986), 103-114. 
  4. [4] F. Bombal and P. Cembranos, Characterizations of some classes of operators on spaces of vector valued continuous functions, Math. Proc. Cambridge Philos. Soc. 97 (1985), 137-146. Zbl0564.47013
  5. [5] J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin, 1984. 
  6. [6] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977. 
  7. [7] N. Dinculeanu, Vector Measures, Pergamon Press, Oxford, 1967. 
  8. [8] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955). 
  9. [9] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. Zbl0466.46001
  10. [10] K. Lermer, Characterizations of weakly compact nonlinear integral operators on C(S)-spaces, Stud. Cerc. Mat. 48 (1996), 365-378. Zbl0859.47035
  11. [11] A. Pietsch, Operator Ideals, North-Holland, 1980. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.