A noncommutative limit theorem for homogeneous correlations
Studia Mathematica (1998)
- Volume: 129, Issue: 3, page 225-252
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [AFL] L. Accardi, A. Frigerio and J. T. Lewis, Quantum stochastic processes, Publ. RIMS Kyoto Univ. 18 (1982), 97-133. Zbl0498.60099
- [A-L] L. Accardi and Y. G. Lu, Quantum central limit theorems for weakly dependent maps, preprint No. 54, Centro Matematico V. Volterra, Universita di Roma II, 1990.
- [B-S] M. Bożejko and R. Speicher, Interpolations between bosonic and fermionic relations given by generalized brownian motions, Math. Z. 222 (1996), 135-160. Zbl0843.60071
- [C-H] D. D. Cushen and R. L. Hudson, A quantum-mechanical central limit theorem, J. Appl. Probab. 8 (1971), 454-469. Zbl0224.60049
- [G-W] N. Giri and W. von Waldenfels, An algebraic version of the central limit theorem, Z. Wahrsch. Verw. Gebiete 42 (1978), 129-134. Zbl0362.60043
- [H] R. L. Hudson, A quantum mechanical central limit theorem for anti-commuting observables, J. Appl. Probab. 10 (1973), 502-509.
- [L1] R. Lenczewski, On sums of q-independent quantum variables, Comm. Math. Phys. 154 (1993), 127-34.
- [L2] R. Lenczewski, Addition of independent variables in quantum groups, Rev. Math. Phys. 6 (1994), 135-147. Zbl0793.60116
- [L3] R. Lenczewski, Quantum random walk for and a new example of quantum noise, J. Math. Phys. 37 (1996), 2260-2278. Zbl0872.60055
- [L-P] R. Lenczewski and K. Podgórski, A q-analog of the quantum central limit theorem for , ibid. 33 (1992), 2768-2778. Zbl0761.60078
- [Sch] M. Schürmann, Quantum q-white noise and a q-central limit theorem, Comm. Math. Phys. 140 (1991), 589-615. Zbl0734.60048
- [S] R. Speicher, A new example of "independence" and "white noise", Probab. Theory Related Fields 84 (1990), 141-159. Zbl0671.60109
- [S-W] R. Speicher and W. von Waldenfels, A general central limit theorem and invariance principle, in: Quantum Probability and Related Topics, Vol. IX, World Scientific, 1994, 371-387.
- [T] H. Tamanoi, Higher Schwarzian operators and combinatorics of the Schwarzian derivative, Math. Ann. 305 (1996), 127-151. Zbl0890.30004
- [V] D. Voiculescu, Symmetries of some reduced free product C*-algebras, in: Operator Algebras and their Connections with Topology and Ergodic Theory, Lecture Notes in Math. 1132, Springer, Berlin, 1985, 556-588.
- [W] W. von Waldenfels, An algebraic central limit theorem in the anticommuting case, Z. Wahrsch. Verw. Gebiete 42 (1979), 135-140. Zbl0405.60095