Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces

G. Krupa

Studia Mathematica (1998)

  • Volume: 131, Issue: 3, page 289-302
  • ISSN: 0039-3223

Abstract

top
Under different compactness assumptions pointwise and mean ergodic theorems for subadditive superstationary families of random sets whose values are weakly (or strongly) compact convex subsets of a separable Banach space are presented. The results generalize those of [14], where random sets in d are considered. Techniques used here are inspired by [3].

How to cite

top

Krupa, G.. "Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces." Studia Mathematica 131.3 (1998): 289-302. <http://eudml.org/doc/216581>.

@article{Krupa1998,
abstract = {Under different compactness assumptions pointwise and mean ergodic theorems for subadditive superstationary families of random sets whose values are weakly (or strongly) compact convex subsets of a separable Banach space are presented. The results generalize those of [14], where random sets in $ℝ^d$ are considered. Techniques used here are inspired by [3].},
author = {Krupa, G.},
journal = {Studia Mathematica},
keywords = {multivalued ergodic theorems; measurable multifunctions; random sets; subadditive superstationary processes; set convergence; pointwise and mean ergodic theorems; subadditive superstationary families; random subsets; separable Banach space},
language = {eng},
number = {3},
pages = {289-302},
title = {Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces},
url = {http://eudml.org/doc/216581},
volume = {131},
year = {1998},
}

TY - JOUR
AU - Krupa, G.
TI - Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces
JO - Studia Mathematica
PY - 1998
VL - 131
IS - 3
SP - 289
EP - 302
AB - Under different compactness assumptions pointwise and mean ergodic theorems for subadditive superstationary families of random sets whose values are weakly (or strongly) compact convex subsets of a separable Banach space are presented. The results generalize those of [14], where random sets in $ℝ^d$ are considered. Techniques used here are inspired by [3].
LA - eng
KW - multivalued ergodic theorems; measurable multifunctions; random sets; subadditive superstationary processes; set convergence; pointwise and mean ergodic theorems; subadditive superstationary families; random subsets; separable Banach space
UR - http://eudml.org/doc/216581
ER -

References

top
  1. [1] M. Abid, Un théorème ergodique pour des processus sous-additifs et sur-stationnaires, C. R. Acad. Sci. Paris Sér. A 287 (1978), 149-152. Zbl0386.60028
  2. [2] Z. Artstein and J. C. Hansen, Convexification in limit laws of random sets in Banach spaces, Ann. Probab. 13 (1985), 307-309. Zbl0554.60022
  3. [3] E. J. Balder and Ch. Hess, Two generalizations of Komlós' theorem with lower closure-type applications, J. Convex Anal. 3 (1996), 25-44. 
  4. [4] J. Brooks and R. V. Chacon, Continuity and compactness of measures, Adv. Math. 37 (1980), 16-26. Zbl0463.28003
  5. [5] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin, 1977. 
  6. [6] A. Costé, La propriété de Radon-Nikodym en intégration multivoque, C. R. Acad. Sci. Paris Sér. A 280 (1975), 1515-1518. Zbl0313.28007
  7. [7] A. Costé, Contribution à la théorie de l'intégration multivoque, thèse d'état, Université Pierre et Marie Curie, Paris, 1977. 
  8. [8] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1979. 
  9. [9] J. M. Hammersley, Postulates for subadditive processes, Ann. Probab. 2 (1974), 652-680. Zbl0303.60044
  10. [10] Ch. Hess, On multivalued martingales whose values may be unbounded: Martingale selectors and Mosco convergence, J. Multivariate Anal. 39 (1991), 175-201. Zbl0746.60051
  11. [11] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, ibid. 7 (1977), 149-182. Zbl0368.60006
  12. [12] J. F. C. Kingman, The ergodic theory of subadditive stochastic processes, J. Roy. Statist. Soc. Ser. B 30 (1968), 499-510. Zbl0182.22802
  13. [13] U. Krengel, Un théorème ergodique pour les processus sur-stationnaires, C. R. Acad. Sci. Paris Sér. A 282 (1976), 1019-1021. Zbl0343.60017
  14. [14] K. Schürger, Ergodic theorems for subadditive superstationary families of convex compact random sets, Z. Wahrsch. Verw. Gebiete 62 (1983), 125-135. Zbl0489.60005
  15. [15] F. A. Valentine, Convex Sets, McGraw-Hill and Wiley, New York, 1968. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.