On oscillatory integral operators with folding canonical relations

Allan Greenleaf; Andreas Seeger

Studia Mathematica (1999)

  • Volume: 132, Issue: 2, page 125-139
  • ISSN: 0039-3223

Abstract

top
Sharp L p estimates are proven for oscillatory integrals with phase functions Φ(x,y), (x,y) ∈ X × Y, under the assumption that the canonical relation C Φ projects to T*X and T*Y with fold singularities.

How to cite

top

Greenleaf, Allan, and Seeger, Andreas. "On oscillatory integral operators with folding canonical relations." Studia Mathematica 132.2 (1999): 125-139. <http://eudml.org/doc/216590>.

@article{Greenleaf1999,
abstract = {Sharp $L^p$ estimates are proven for oscillatory integrals with phase functions Φ(x,y), (x,y) ∈ X × Y, under the assumption that the canonical relation $C_Φ$ projects to T*X and T*Y with fold singularities.},
author = {Greenleaf, Allan, Seeger, Andreas},
journal = {Studia Mathematica},
keywords = {oscillatory integrals; Fourier integral operators; fold singularities; oscillatory integral; canonical relation; fold singularity},
language = {eng},
number = {2},
pages = {125-139},
title = {On oscillatory integral operators with folding canonical relations},
url = {http://eudml.org/doc/216590},
volume = {132},
year = {1999},
}

TY - JOUR
AU - Greenleaf, Allan
AU - Seeger, Andreas
TI - On oscillatory integral operators with folding canonical relations
JO - Studia Mathematica
PY - 1999
VL - 132
IS - 2
SP - 125
EP - 139
AB - Sharp $L^p$ estimates are proven for oscillatory integrals with phase functions Φ(x,y), (x,y) ∈ X × Y, under the assumption that the canonical relation $C_Φ$ projects to T*X and T*Y with fold singularities.
LA - eng
KW - oscillatory integrals; Fourier integral operators; fold singularities; oscillatory integral; canonical relation; fold singularity
UR - http://eudml.org/doc/216590
ER -

References

top
  1. [1] J. Bourgain, Estimations de certaines fonctions maximales, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 499-502. 
  2. [2] A. P. Calderón and R. Vaillancourt, A class of bounded pseudodifferential operators, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185-1187. Zbl0244.35074
  3. [3] A. Carbery, A. Seeger, S. Wainger and J. Wright, Classes of singular integral operators along variable lines, J. Geom. Anal., to appear. Zbl0964.42003
  4. [4] M. Christ, Failure of an endpoint estimate for integrals along curves, in: Fourier Analysis and Partial Differential Equations, J. García-Cuerva, E. Hernandez, F. Soria and J. L. Torrea (eds.), Stud. Adv. Math., CRC Press, 1995, 163-168. Zbl0871.42017
  5. [5] A. Comech, Oscillatory integral operators in scattering theory, Comm. Partial Differential Equations 22 (1997), 841-867. Zbl0883.35142
  6. [6] S. Cuccagna, L 2 estimates for averaging operators along curves with two-sided k-fold singularities, Duke Math. J. 89 (1997), 203-216. Zbl0908.47050
  7. [7] A. Greenleaf and A. Seeger, Fourier integral operators with fold singularities, J. Reine Angew. Math. 455 (1994), 35-56. Zbl0799.42008
  8. [8] A. Greenleaf and A. Seeger, Fourier integral operators with simple cusps, Amer. J. Math., to appear. 
  9. [9] A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudo-differential operators with singular symbols, J. Funct. Anal. 89 (1990), 202-232. Zbl0717.44001
  10. [10] L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 79-183. Zbl0212.46601
  11. [11] L. Hörmander, Oscillatory integrals and multipliers on F L p , Ark. Mat. 11 (1973), 1-11. Zbl0254.42010
  12. [12] R. Melrose and M. Taylor, Near peak scattering and the correct Kirchhoff approximation for a convex obstacle, Adv. Math. 55 (1985), 242-315. Zbl0591.58034
  13. [13] Y. Pan, Hardy spaces and oscillatory integral operators, Rev. Mat. Iberoamericana 7 (1991), 55-64. 
  14. [14] Y. Pan, Hardy spaces and oscillatory integral operators, II, Pacific J. Math. 168 (1995), 167-182. 
  15. [15] Y. Pan and C. D. Sogge, Oscillatory integrals associated to folding canonical relations, Colloq. Math. 61 (1990), 413-419. Zbl0746.58076
  16. [16] D. H. Phong, Singular integrals and Fourier integral operators, in: Essays on Fourier Analysis in Honor of Elias M. Stein (C. Fefferman, R. Fefferman and S. Wainger, eds.), Princeton Math. Ser. 42, Princeton Univ. Press, 1995, 286-320. 
  17. [17] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals and Radon transforms I, Acta Math. 157 (1986), 99-157. Zbl0622.42011
  18. [18] D. H. Phong and E. M. Stein, Radon transforms and torsion, Internat. Math. Res. Notices 4 (1991), 49-60. Zbl0761.46033
  19. [19] D. H. Phong and E. M. Stein, Models of degenerate Fourier integral operators and Radon transforms, Ann. of Math. 140 (1994), 703-722. Zbl0833.43004
  20. [20] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals I. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194. Zbl0622.42010
  21. [21] A. Seeger, Degenerate Fourier integral operators in the plane, Duke Math. J. 71 (1993), 685-745. Zbl0806.35191
  22. [22] H. Smith and C. D. Sogge, L p regularity for the wave equation with strictly convex obstacles, Duke Math. J. 73 (1994), 97-153. Zbl0805.35169
  23. [23] E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton, N.J., 1986, 307-356. 
  24. [24] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. Zbl0821.42001
  25. [25] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. Zbl0232.42007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.