On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions

S. Rolewicz

Studia Mathematica (1999)

  • Volume: 133, Issue: 1, page 29-37
  • ISSN: 0039-3223

Abstract

top
Let (X,d) be a metric space. Let Φ be a family of real-valued functions defined on X. Sufficient conditions are given for an α(·)-monotone multifunction Γ : X 2 Φ to be single-valued and continuous on a weakly angle-small set. As an application it is shown that a γ-paraconvex function defined on an open convex subset of a Banach space having separable dual is Fréchet differentiable on a residual set.

How to cite

top

Rolewicz, S.. "On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions." Studia Mathematica 133.1 (1999): 29-37. <http://eudml.org/doc/216603>.

@article{Rolewicz1999,
abstract = {Let (X,d) be a metric space. Let Φ be a family of real-valued functions defined on X. Sufficient conditions are given for an α(·)-monotone multifunction $Γ: X → 2^Φ$ to be single-valued and continuous on a weakly angle-small set. As an application it is shown that a γ-paraconvex function defined on an open convex subset of a Banach space having separable dual is Fréchet differentiable on a residual set.},
author = {Rolewicz, S.},
journal = {Studia Mathematica},
keywords = {Fréchet Φ-differentiability; γ-paraconvex functions; α(·)-monotone multifunctions; metric space; -monotone multifunction; weakly angle-small set; -paraconvex function; Fréchet differentiable},
language = {eng},
number = {1},
pages = {29-37},
title = {On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions},
url = {http://eudml.org/doc/216603},
volume = {133},
year = {1999},
}

TY - JOUR
AU - Rolewicz, S.
TI - On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions
JO - Studia Mathematica
PY - 1999
VL - 133
IS - 1
SP - 29
EP - 37
AB - Let (X,d) be a metric space. Let Φ be a family of real-valued functions defined on X. Sufficient conditions are given for an α(·)-monotone multifunction $Γ: X → 2^Φ$ to be single-valued and continuous on a weakly angle-small set. As an application it is shown that a γ-paraconvex function defined on an open convex subset of a Banach space having separable dual is Fréchet differentiable on a residual set.
LA - eng
KW - Fréchet Φ-differentiability; γ-paraconvex functions; α(·)-monotone multifunctions; metric space; -monotone multifunction; weakly angle-small set; -paraconvex function; Fréchet differentiable
UR - http://eudml.org/doc/216603
ER -

References

top
  1. [1] E. Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31-47. Zbl0162.17501
  2. [2] A. Jourani, Subdifferentiability and subdifferential monotonicity of γ-paraconvex functions, Control Cybernet. 25 (1996), 721-737. Zbl0862.49018
  3. [3] S. Mazur, Über konvexe Mengen in linearen normierten Räumen, Studia Math. 4 (1933), 70-84. Zbl59.1074.01
  4. [4] D. Pallaschke and S. Rolewicz, Foundations of Mathematical Optimization, Math. Appl. 388, Kluwer, Dordrecht, 1997. Zbl0887.49001
  5. [5] D. Preiss and L. Zajíček, Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions, Suppl. Rend. Circ. Mat. Palermo (2) 3 (1984), 219-223. Zbl0547.46026
  6. [6] S. Rolewicz, On paraconvex multifunctions, in: Third Symposium on Operation Research (Mannheim, 1978), Operations Res. Verfahren 31, Hain, Königstein/Ts., 1979, 539-546. Zbl0403.49021
  7. [7] S. Rolewicz, On γ-paraconvex multifunctions, Math. Japon. 24 (1979), 293-300. Zbl0434.54009
  8. [8] S. Rolewicz, Generalization of Asplund inequalities on Lipschitz functions, Arch. Math. (Basel) 61 (1993), 484-488. Zbl0791.49019
  9. [9] S. Rolewicz, On an extension of Mazur's theorem on Lipschitz functions, ibid. 63 (1994), 535-540. Zbl0813.49018
  10. [10] S. Rolewicz, On subdifferentials on non-convex sets, in: Different Aspects of Differentiablity, D. Przeworska-Rolewicz (ed.), Dissertationes Math. 340 (1995), 301-308. Zbl0957.49012
  11. [11] S. Rolewicz, Convexity versus linearity, in: Transform Methods and Special Functions 94, P. Rusev, I. Dimovski and V. Kiryakova (eds.), Science Culture Technology Publ., Singapore, 1995, 253-263. Zbl0928.49018
  12. [12] S. Rolewicz, On Φ-differentiability of functions over metric spaces, Topol. Methods Nonlinear Anal. 5 (1995), 229-236. Zbl0894.46030
  13. [13] S. Rolewicz, On approximations of functions on metric spaces, Acta Univ. Lodz. Folia Math. 8 (1996), 99-108. Zbl0881.46032
  14. [14] I. Singer, Abstract Convex Analysis, Wiley, 1997. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.