# On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions

Studia Mathematica (1999)

- Volume: 133, Issue: 1, page 29-37
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topRolewicz, S.. "On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions." Studia Mathematica 133.1 (1999): 29-37. <http://eudml.org/doc/216603>.

@article{Rolewicz1999,

abstract = {Let (X,d) be a metric space. Let Φ be a family of real-valued functions defined on X. Sufficient conditions are given for an α(·)-monotone multifunction $Γ: X → 2^Φ$ to be single-valued and continuous on a weakly angle-small set. As an application it is shown that a γ-paraconvex function defined on an open convex subset of a Banach space having separable dual is Fréchet differentiable on a residual set.},

author = {Rolewicz, S.},

journal = {Studia Mathematica},

keywords = {Fréchet Φ-differentiability; γ-paraconvex functions; α(·)-monotone multifunctions; metric space; -monotone multifunction; weakly angle-small set; -paraconvex function; Fréchet differentiable},

language = {eng},

number = {1},

pages = {29-37},

title = {On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions},

url = {http://eudml.org/doc/216603},

volume = {133},

year = {1999},

}

TY - JOUR

AU - Rolewicz, S.

TI - On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions

JO - Studia Mathematica

PY - 1999

VL - 133

IS - 1

SP - 29

EP - 37

AB - Let (X,d) be a metric space. Let Φ be a family of real-valued functions defined on X. Sufficient conditions are given for an α(·)-monotone multifunction $Γ: X → 2^Φ$ to be single-valued and continuous on a weakly angle-small set. As an application it is shown that a γ-paraconvex function defined on an open convex subset of a Banach space having separable dual is Fréchet differentiable on a residual set.

LA - eng

KW - Fréchet Φ-differentiability; γ-paraconvex functions; α(·)-monotone multifunctions; metric space; -monotone multifunction; weakly angle-small set; -paraconvex function; Fréchet differentiable

UR - http://eudml.org/doc/216603

ER -

## References

top- [1] E. Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31-47. Zbl0162.17501
- [2] A. Jourani, Subdifferentiability and subdifferential monotonicity of γ-paraconvex functions, Control Cybernet. 25 (1996), 721-737. Zbl0862.49018
- [3] S. Mazur, Über konvexe Mengen in linearen normierten Räumen, Studia Math. 4 (1933), 70-84. Zbl59.1074.01
- [4] D. Pallaschke and S. Rolewicz, Foundations of Mathematical Optimization, Math. Appl. 388, Kluwer, Dordrecht, 1997. Zbl0887.49001
- [5] D. Preiss and L. Zajíček, Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions, Suppl. Rend. Circ. Mat. Palermo (2) 3 (1984), 219-223. Zbl0547.46026
- [6] S. Rolewicz, On paraconvex multifunctions, in: Third Symposium on Operation Research (Mannheim, 1978), Operations Res. Verfahren 31, Hain, Königstein/Ts., 1979, 539-546. Zbl0403.49021
- [7] S. Rolewicz, On γ-paraconvex multifunctions, Math. Japon. 24 (1979), 293-300. Zbl0434.54009
- [8] S. Rolewicz, Generalization of Asplund inequalities on Lipschitz functions, Arch. Math. (Basel) 61 (1993), 484-488. Zbl0791.49019
- [9] S. Rolewicz, On an extension of Mazur's theorem on Lipschitz functions, ibid. 63 (1994), 535-540. Zbl0813.49018
- [10] S. Rolewicz, On subdifferentials on non-convex sets, in: Different Aspects of Differentiablity, D. Przeworska-Rolewicz (ed.), Dissertationes Math. 340 (1995), 301-308. Zbl0957.49012
- [11] S. Rolewicz, Convexity versus linearity, in: Transform Methods and Special Functions 94, P. Rusev, I. Dimovski and V. Kiryakova (eds.), Science Culture Technology Publ., Singapore, 1995, 253-263. Zbl0928.49018
- [12] S. Rolewicz, On Φ-differentiability of functions over metric spaces, Topol. Methods Nonlinear Anal. 5 (1995), 229-236. Zbl0894.46030
- [13] S. Rolewicz, On approximations of functions on metric spaces, Acta Univ. Lodz. Folia Math. 8 (1996), 99-108. Zbl0881.46032
- [14] I. Singer, Abstract Convex Analysis, Wiley, 1997.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.