# Toeplitz operators in the commutant of a composition operator

Studia Mathematica (1999)

- Volume: 133, Issue: 2, page 187-196
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topCload, Bruce. "Toeplitz operators in the commutant of a composition operator." Studia Mathematica 133.2 (1999): 187-196. <http://eudml.org/doc/216613>.

@article{Cload1999,

abstract = {If ϕ is an analytic self-mapping of the unit disc D and if $H^2(D)$ is the Hardy-Hilbert space on D, the composition operator $C_ϕ$ on $H^\{2\}(D)$ is defined by $C_ϕ(f) = f∘ϕ$. In this article, we consider which Toeplitz operators $T_f$ satisfy $T_\{f\}C_\{ϕ\} = C_\{ϕ\}T_\{f\}$},

author = {Cload, Bruce},

journal = {Studia Mathematica},

keywords = {Hardy-Hilbert space; composition operator; Toeplitz operators},

language = {eng},

number = {2},

pages = {187-196},

title = {Toeplitz operators in the commutant of a composition operator},

url = {http://eudml.org/doc/216613},

volume = {133},

year = {1999},

}

TY - JOUR

AU - Cload, Bruce

TI - Toeplitz operators in the commutant of a composition operator

JO - Studia Mathematica

PY - 1999

VL - 133

IS - 2

SP - 187

EP - 196

AB - If ϕ is an analytic self-mapping of the unit disc D and if $H^2(D)$ is the Hardy-Hilbert space on D, the composition operator $C_ϕ$ on $H^{2}(D)$ is defined by $C_ϕ(f) = f∘ϕ$. In this article, we consider which Toeplitz operators $T_f$ satisfy $T_{f}C_{ϕ} = C_{ϕ}T_{f}$

LA - eng

KW - Hardy-Hilbert space; composition operator; Toeplitz operators

UR - http://eudml.org/doc/216613

ER -

## References

top- [1] D. F. Behan, Commuting analytic functions without fixed points, Proc. Amer. Math. Soc. 37 (1973), 114-120. Zbl0251.30009
- [2] R. B. Burckel, Iterating analytic self-maps of discs, Amer. Math. Monthly 88 (1981), 396-407. Zbl0466.30001
- [3] B. Cload, Generating the commutant of a composition operator, in: Contemp. Math. 213, Amer. Math. Soc., 1998, 11-15. Zbl0901.47017
- [4] B. Cload, Composition operators: hyperinvariant subspaces quasi-normals and isometries, Proc. Amer. Math. Soc., to appear. Zbl0917.47027
- [5] C. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc. 239 (1978), 1-31. Zbl0391.47014
- [6] C. C. Cowen, Commuting analytic functions, ibid. 265 (1981), 69-95.
- [7] C. C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, 1995. Zbl0873.47017
- [8] C. C. Cowen and B. MacCluer, Some problems on composition operators, in: Contemp. Math. 213, Amer. Math. Soc., 1998, 17-25.
- [9] P. Duren, Theory of ${H}^{p}$ Spaces, Academic Press, 1970.
- [10] M. H. Heins, A generalization of the Aumann-Carathéodory "Starrheitssatz", Duke Math. J. 8 (1941), 312-316. Zbl67.0283.02
- [11] K. Hoffman, Banach Spaces of Analytic Functions, Dover, 1988. Zbl0734.46033
- [12] P. Hurst, A model for the invertible composition operators on ${H}^{2}$, Proc. Amer. Math. Soc. 124 (1996), 1847-1856. Zbl0857.47017
- [13] E. A. Nordgren, Composition operators, Canad. J. Math. 20 (1968), 442-449. Zbl0161.34703
- [14] E. A. Nordgren, P. Rosenthal and F. S. Wintrobe, Invertible composition operators on ${H}^{p}$, J. Funct. Anal. 73 (1987), 324-344.
- [15] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1987. Zbl0925.00005
- [16] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, New York, 1993. Zbl0791.30033
- [17] A. L. Shields, On fixed points of commuting analytic functions, Proc. Amer. Math. Soc. 15 (1964), 703-706. Zbl0129.29104
- [18] A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, in: Indiana Univ. Math. Surveys 13, Amer. Math. Soc., Providence, 1974, 49-128.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.