Uniqueness of unconditional bases in c 0 -products

P. Casazza; N. Kalton

Studia Mathematica (1999)

  • Volume: 133, Issue: 3, page 275-294
  • ISSN: 0039-3223

Abstract

top
We give counterexamples to a conjecture of Bourgain, Casazza, Lindenstrauss and Tzafriri that if X has a unique unconditional basis (up to permutation) then so does c 0 ( X ) . We also give some positive results including a simpler proof that c 0 ( 1 ) has a unique unconditional basis and a proof that c 0 ( p n N n ) has a unique unconditional basis when p n 1 , N n + 1 2 N n and ( p n - p n + 1 ) l o g N n remains bounded.

How to cite

top

Casazza, P., and Kalton, N.. "Uniqueness of unconditional bases in $c_0$-products." Studia Mathematica 133.3 (1999): 275-294. <http://eudml.org/doc/216619>.

@article{Casazza1999,
abstract = {We give counterexamples to a conjecture of Bourgain, Casazza, Lindenstrauss and Tzafriri that if X has a unique unconditional basis (up to permutation) then so does $c_0(X)$. We also give some positive results including a simpler proof that $c_0(ℓ_1)$ has a unique unconditional basis and a proof that $c_0(ℓ_\{p_n\}^\{N_n\})$ has a unique unconditional basis when $p_n ↓ 1$, $N_\{n+1\} ≥ 2N_\{n\}$ and $(p_n-p_\{n+1\}) logN_\{n\}$ remains bounded.},
author = {Casazza, P., Kalton, N.},
journal = {Studia Mathematica},
keywords = {space ; unconditional basis; Tsirelson space},
language = {eng},
number = {3},
pages = {275-294},
title = {Uniqueness of unconditional bases in $c_0$-products},
url = {http://eudml.org/doc/216619},
volume = {133},
year = {1999},
}

TY - JOUR
AU - Casazza, P.
AU - Kalton, N.
TI - Uniqueness of unconditional bases in $c_0$-products
JO - Studia Mathematica
PY - 1999
VL - 133
IS - 3
SP - 275
EP - 294
AB - We give counterexamples to a conjecture of Bourgain, Casazza, Lindenstrauss and Tzafriri that if X has a unique unconditional basis (up to permutation) then so does $c_0(X)$. We also give some positive results including a simpler proof that $c_0(ℓ_1)$ has a unique unconditional basis and a proof that $c_0(ℓ_{p_n}^{N_n})$ has a unique unconditional basis when $p_n ↓ 1$, $N_{n+1} ≥ 2N_{n}$ and $(p_n-p_{n+1}) logN_{n}$ remains bounded.
LA - eng
KW - space ; unconditional basis; Tsirelson space
UR - http://eudml.org/doc/216619
ER -

References

top
  1. [1] B. Bollobas, Combinatorics, Cambridge Univ. Press, 1986. 
  2. [2] J. Bourgain, On the Dunford-Pettis property, Proc. Amer. Math. Soc. 81 (1981), 265-272. Zbl0463.46027
  3. [3] J. Bourgain, P. G. Casazza, J. Lindenstrauss and L. Tzafriri, Banach spaces with a unique unconditional basis, up to a permutation, Mem. Amer. Math. Soc. 322 (1985). Zbl0575.46011
  4. [4] P. G. Casazza and N. J. Kalton, Uniqueness of unconditional bases in Banach spaces, Israel J. Math. 103 (1998), 141-176. Zbl0939.46009
  5. [5] P. G. Casazza and T. J. Schura, Tsirelson's Space, Lecture Notes in Math. 1363, Springer, 1989. 
  6. [6] I. S. Edelstein and P. Wojtaszczyk, On projections and unconditional bases in direct sums of Banach spaces, Studia Math. 56 (1976), 263-276. Zbl0362.46017
  7. [7] T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94. Zbl0375.52002
  8. [8] W. T. Gowers, A solution to Banach's hyperplane problem, Bull. London Math. Soc. 26 (1994), 523-530. Zbl0838.46011
  9. [9] G. Köthe and O. Toeplitz, Lineare Räume mit unendlich vielen Koordinaten und Ringen unendlicher Matrizen, J. Reine Angew. Math. 171 (1934), 193-226. Zbl0009.25704
  10. [10] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in L p -spaces and their applications, Studia Math. 29 (1968), 315-349. Zbl0183.40501
  11. [11] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977. Zbl0362.46013
  12. [12] J. Lindenstrauss and M. Zippin, Banach spaces with a unique unconditional basis, J. Funct. Anal. 3 (1969), 115-125. Zbl0174.17201
  13. [13] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite-Dimensional Spaces, Lecture Notes in Math. 1200, Springer, 1986. Zbl0606.46013
  14. [14] B. S. Mityagin, Equivalence of bases in Hilbert scales, Studia Math. 37 (1970), 111-137 (in Russian). 
  15. [15] G. Pisier, The Volume of Convex Bodies and Geometry of Banach Spaces, Cambridge Tracts in Math. 94, Cambridge Univ. Press, 1989. 
  16. [16] P. Wojtaszczyk, Uniqueness of unconditional bases in quasi-Banach spaces with applications to Hardy spaces, II, Israel J. Math 97 (1997), 253-280. Zbl0874.46007
  17. [17] M. Wojtowicz, On Cantor-Bernstein type theorems in Riesz spaces, Indag. Math. 91 (1988), 93-100. Zbl0654.46013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.