On coerciveness in Besov spaces for abstract parabolic equations of higher order

Yoshitaka Yamamoto

Studia Mathematica (1999)

  • Volume: 134, Issue: 1, page 79-98
  • ISSN: 0039-3223

Abstract

top
We are concerned with a relation between parabolicity and coerciveness in Besov spaces for a higher order linear evolution equation in a Banach space. As proved in a preceding work, a higher order linear evolution equation enjoys coerciveness in Besov spaces under a certain parabolicity condition adopted and studied by several authors. We show that for a higher order linear evolution equation coerciveness in Besov spaces forces the parabolicity of the equation. We thus conclude that parabolicity and coerciveness in Besov spaces are equivalent.

How to cite

top

Yamamoto, Yoshitaka. "On coerciveness in Besov spaces for abstract parabolic equations of higher order." Studia Mathematica 134.1 (1999): 79-98. <http://eudml.org/doc/216624>.

@article{Yamamoto1999,
abstract = {We are concerned with a relation between parabolicity and coerciveness in Besov spaces for a higher order linear evolution equation in a Banach space. As proved in a preceding work, a higher order linear evolution equation enjoys coerciveness in Besov spaces under a certain parabolicity condition adopted and studied by several authors. We show that for a higher order linear evolution equation coerciveness in Besov spaces forces the parabolicity of the equation. We thus conclude that parabolicity and coerciveness in Besov spaces are equivalent.},
author = {Yamamoto, Yoshitaka},
journal = {Studia Mathematica},
keywords = {parabolicity; coerciveness in Besov spaces; higher-order linear evolution equation in a Banach space},
language = {eng},
number = {1},
pages = {79-98},
title = {On coerciveness in Besov spaces for abstract parabolic equations of higher order},
url = {http://eudml.org/doc/216624},
volume = {134},
year = {1999},
}

TY - JOUR
AU - Yamamoto, Yoshitaka
TI - On coerciveness in Besov spaces for abstract parabolic equations of higher order
JO - Studia Mathematica
PY - 1999
VL - 134
IS - 1
SP - 79
EP - 98
AB - We are concerned with a relation between parabolicity and coerciveness in Besov spaces for a higher order linear evolution equation in a Banach space. As proved in a preceding work, a higher order linear evolution equation enjoys coerciveness in Besov spaces under a certain parabolicity condition adopted and studied by several authors. We show that for a higher order linear evolution equation coerciveness in Besov spaces forces the parabolicity of the equation. We thus conclude that parabolicity and coerciveness in Besov spaces are equivalent.
LA - eng
KW - parabolicity; coerciveness in Besov spaces; higher-order linear evolution equation in a Banach space
UR - http://eudml.org/doc/216624
ER -

References

top
  1. [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976. Zbl0344.46071
  2. [2] H. Brézis and L. E. Fraenkel, A function with prescribed initial derivatives in different Banach spaces, J. Funct. Anal. 29 (1978), 328-335. Zbl0388.46026
  3. [3] P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer, Berlin, 1967. Zbl0164.43702
  4. [4] G. Da Prato et P. Grisvard, Sommes d'opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures Appl. 54 (1975), 305-387. Zbl0315.47009
  5. [5] G. Da Prato and E. Sinestrari, Differential operators with non dense domain, Ann. Scuola Norm. Sup. Pisa 14 (1987), 285-344. Zbl0652.34069
  6. [6] G. Di Blasio, Linear parabolic evolution equations in L p -spaces, Ann. Mat. 138 (1984), 55-104. Zbl0568.35047
  7. [7] Yu. A. Dubinskiĭ, On some differential-operator equations of arbitrary order, Math. USSR-Sb. 19 (1973), 1-21. 
  8. [8] A. Favini and E. Obrecht, Conditions for parabolicity of second order abstract differential equations, Differential Integral Equations 4 (1991), 1005-1022. Zbl0735.34043
  9. [9] A. Favini and H. Tanabe, On regularity of solutions to n-order differential equations of parabolic type in Banach spaces, Osaka J. Math. 31 (1994), 225-246. Zbl0818.34030
  10. [10] P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures Appl. 45 (1966), 207-290. Zbl0173.15803
  11. [11] P. Grisvard, Équations différentielles abstraites, Ann. Sci. École Norm. Sup. 2 (1969), 311-395. Zbl0193.43502
  12. [12] J. Lagnese, On equations of evolution and parabolic equations of higher order in t, J. Math. Anal. Appl. 32 (1970), 15-37. Zbl0207.14002
  13. [13] T. Muramatu, On Besov spaces of functions defined in general regions, Publ. R.I.M.S. Kyoto Univ. 6 (1970),//1971 515-543. Zbl0225.46036
  14. [14] T. Muramatu, On Besov spaces and Sobolev spaces of generalized functions defined on a general region, ibid. 9 (1974), 325-396. Zbl0287.46046
  15. [15] T. Muramatu, Besov spaces and analytic semigroups of linear operators, J. Math. Soc. Japan 42 (1990), 133-146. Zbl0713.46022
  16. [16] E. Obrecht, Sul problema di Cauchy per le equazioni paraboliche astratte di ordine n, Rend. Sem. Mat. Univ. Padova 53 (1975), 231-256. Zbl0326.34076
  17. [17] E. Obrecht, Evolution operators for higher order abstract parabolic equations, Czechoslovak Math. J. 36 (111) (1986), 210-222. Zbl0618.35054
  18. [18] E. Obrecht, The Cauchy problem for time-dependent abstract parabolic equations of higher order, J. Math. Anal. Appl. 125 (1987), 508-530. Zbl0645.34052
  19. [19] E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl. 107 (1985), 16-66. Zbl0589.47042
  20. [20] P. E. Sobolevskiĭ, Coerciveness inequalities for abstract parabolic equations, Soviet Math. Dokl. 5 (1964), 894-897. Zbl0149.36001
  21. [21] H. Tanabe, Equations of Evolution, Pitman, London, 1979. 
  22. [22] H. Tanabe, Volterra integro-differential equations of parabolic type of higher order in t, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 111-125. Zbl0628.45008
  23. [23] H. Tanabe, On fundamental solutions of linear parabolic equations of higher order in time and associated Volterra equations, J. Differential Equations 73 (1988), 288-308. Zbl0673.35042
  24. [24] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. 
  25. [25] Y. Yamamoto, Remarks on coerciveness in Besov spaces for abstract parabolic equations, J. Math. Kyoto Univ. 34 (1994), 207-218. Zbl0811.35041
  26. [26] Y. Yamamoto, Solutions in Besov spaces of a class of abstract parabolic equations of higher order in time, ibid. 38 (1998), 201-227. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.