# On coerciveness in Besov spaces for abstract parabolic equations of higher order

Studia Mathematica (1999)

- Volume: 134, Issue: 1, page 79-98
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topYamamoto, Yoshitaka. "On coerciveness in Besov spaces for abstract parabolic equations of higher order." Studia Mathematica 134.1 (1999): 79-98. <http://eudml.org/doc/216624>.

@article{Yamamoto1999,

abstract = {We are concerned with a relation between parabolicity and coerciveness in Besov spaces for a higher order linear evolution equation in a Banach space. As proved in a preceding work, a higher order linear evolution equation enjoys coerciveness in Besov spaces under a certain parabolicity condition adopted and studied by several authors. We show that for a higher order linear evolution equation coerciveness in Besov spaces forces the parabolicity of the equation. We thus conclude that parabolicity and coerciveness in Besov spaces are equivalent.},

author = {Yamamoto, Yoshitaka},

journal = {Studia Mathematica},

keywords = {parabolicity; coerciveness in Besov spaces; higher-order linear evolution equation in a Banach space},

language = {eng},

number = {1},

pages = {79-98},

title = {On coerciveness in Besov spaces for abstract parabolic equations of higher order},

url = {http://eudml.org/doc/216624},

volume = {134},

year = {1999},

}

TY - JOUR

AU - Yamamoto, Yoshitaka

TI - On coerciveness in Besov spaces for abstract parabolic equations of higher order

JO - Studia Mathematica

PY - 1999

VL - 134

IS - 1

SP - 79

EP - 98

AB - We are concerned with a relation between parabolicity and coerciveness in Besov spaces for a higher order linear evolution equation in a Banach space. As proved in a preceding work, a higher order linear evolution equation enjoys coerciveness in Besov spaces under a certain parabolicity condition adopted and studied by several authors. We show that for a higher order linear evolution equation coerciveness in Besov spaces forces the parabolicity of the equation. We thus conclude that parabolicity and coerciveness in Besov spaces are equivalent.

LA - eng

KW - parabolicity; coerciveness in Besov spaces; higher-order linear evolution equation in a Banach space

UR - http://eudml.org/doc/216624

ER -

## References

top- [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976. Zbl0344.46071
- [2] H. Brézis and L. E. Fraenkel, A function with prescribed initial derivatives in different Banach spaces, J. Funct. Anal. 29 (1978), 328-335. Zbl0388.46026
- [3] P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer, Berlin, 1967. Zbl0164.43702
- [4] G. Da Prato et P. Grisvard, Sommes d'opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures Appl. 54 (1975), 305-387. Zbl0315.47009
- [5] G. Da Prato and E. Sinestrari, Differential operators with non dense domain, Ann. Scuola Norm. Sup. Pisa 14 (1987), 285-344. Zbl0652.34069
- [6] G. Di Blasio, Linear parabolic evolution equations in ${L}^{p}$-spaces, Ann. Mat. 138 (1984), 55-104. Zbl0568.35047
- [7] Yu. A. Dubinskiĭ, On some differential-operator equations of arbitrary order, Math. USSR-Sb. 19 (1973), 1-21.
- [8] A. Favini and E. Obrecht, Conditions for parabolicity of second order abstract differential equations, Differential Integral Equations 4 (1991), 1005-1022. Zbl0735.34043
- [9] A. Favini and H. Tanabe, On regularity of solutions to n-order differential equations of parabolic type in Banach spaces, Osaka J. Math. 31 (1994), 225-246. Zbl0818.34030
- [10] P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures Appl. 45 (1966), 207-290. Zbl0173.15803
- [11] P. Grisvard, Équations différentielles abstraites, Ann. Sci. École Norm. Sup. 2 (1969), 311-395. Zbl0193.43502
- [12] J. Lagnese, On equations of evolution and parabolic equations of higher order in t, J. Math. Anal. Appl. 32 (1970), 15-37. Zbl0207.14002
- [13] T. Muramatu, On Besov spaces of functions defined in general regions, Publ. R.I.M.S. Kyoto Univ. 6 (1970),//1971 515-543. Zbl0225.46036
- [14] T. Muramatu, On Besov spaces and Sobolev spaces of generalized functions defined on a general region, ibid. 9 (1974), 325-396. Zbl0287.46046
- [15] T. Muramatu, Besov spaces and analytic semigroups of linear operators, J. Math. Soc. Japan 42 (1990), 133-146. Zbl0713.46022
- [16] E. Obrecht, Sul problema di Cauchy per le equazioni paraboliche astratte di ordine n, Rend. Sem. Mat. Univ. Padova 53 (1975), 231-256. Zbl0326.34076
- [17] E. Obrecht, Evolution operators for higher order abstract parabolic equations, Czechoslovak Math. J. 36 (111) (1986), 210-222. Zbl0618.35054
- [18] E. Obrecht, The Cauchy problem for time-dependent abstract parabolic equations of higher order, J. Math. Anal. Appl. 125 (1987), 508-530. Zbl0645.34052
- [19] E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl. 107 (1985), 16-66. Zbl0589.47042
- [20] P. E. Sobolevskiĭ, Coerciveness inequalities for abstract parabolic equations, Soviet Math. Dokl. 5 (1964), 894-897. Zbl0149.36001
- [21] H. Tanabe, Equations of Evolution, Pitman, London, 1979.
- [22] H. Tanabe, Volterra integro-differential equations of parabolic type of higher order in t, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 111-125. Zbl0628.45008
- [23] H. Tanabe, On fundamental solutions of linear parabolic equations of higher order in time and associated Volterra equations, J. Differential Equations 73 (1988), 288-308. Zbl0673.35042
- [24] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
- [25] Y. Yamamoto, Remarks on coerciveness in Besov spaces for abstract parabolic equations, J. Math. Kyoto Univ. 34 (1994), 207-218. Zbl0811.35041
- [26] Y. Yamamoto, Solutions in Besov spaces of a class of abstract parabolic equations of higher order in time, ibid. 38 (1998), 201-227.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.