A note on the hyperreflexivity constant for certain reflexive algebras
Studia Mathematica (1999)
- Volume: 134, Issue: 3, page 203-206
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topTosaka, Satoru. "A note on the hyperreflexivity constant for certain reflexive algebras." Studia Mathematica 134.3 (1999): 203-206. <http://eudml.org/doc/216633>.
@article{Tosaka1999,
abstract = {Using results on the reflexive algebra with two invariant subspaces, we calculate the hyperreflexivity constant for this algebra when the Hilbert space is two-dimensional. Then by the continuity of the angle for two subspaces, there exists a non-CSL hyperreflexive algebra with hyperreflexivity constant C for every C>1. This result leads to a kind of continuity for the hyperreflexivity constant.},
author = {Tosaka, Satoru},
journal = {Studia Mathematica},
keywords = {reflexive algebra; invariant subspaces; non-CSL hyperreflexive algebra; hyperreflexivity constant},
language = {eng},
number = {3},
pages = {203-206},
title = {A note on the hyperreflexivity constant for certain reflexive algebras},
url = {http://eudml.org/doc/216633},
volume = {134},
year = {1999},
}
TY - JOUR
AU - Tosaka, Satoru
TI - A note on the hyperreflexivity constant for certain reflexive algebras
JO - Studia Mathematica
PY - 1999
VL - 134
IS - 3
SP - 203
EP - 206
AB - Using results on the reflexive algebra with two invariant subspaces, we calculate the hyperreflexivity constant for this algebra when the Hilbert space is two-dimensional. Then by the continuity of the angle for two subspaces, there exists a non-CSL hyperreflexive algebra with hyperreflexivity constant C for every C>1. This result leads to a kind of continuity for the hyperreflexivity constant.
LA - eng
KW - reflexive algebra; invariant subspaces; non-CSL hyperreflexive algebra; hyperreflexivity constant
UR - http://eudml.org/doc/216633
ER -
References
top- [1] M. Anoussis, A. Katavolos and M. S. Lambrou, On the reflexive algebra with two invariant subspaces, J. Operator Theory 30 (1993), 267-299. Zbl0840.47035
- [2] W. Argyros, M. S. Lambrou and W. Longstaff, Atomic Boolean subspace lattices and applications to the theory of bases, Mem. Amer. Math. Soc. 445 (1991). Zbl0738.47047
- [3] W. Arveson, Ten Lectures on Operator Algebras, CBMS Regional Conf. Ser. in Math. 55, Amer. Math. Soc., Providence, 1984.
- [4] A. Katavolos, M. S. Lambrou and W. Longstaff, The decomposability of operators relative to two subspaces, Studia Math. 105 (1993), 25-36. Zbl0810.47037
- [5] M. S. Lambrou and W. Longstaff, Unit ball density and the operator equation AX=YB, J. Operator Theory 25 (1991), 383-397. Zbl0806.47015
- [6] M. Papadakis, On hyperreflexivity and rank one density for non-CSL algebras, Studia Math. 98 (1991), 11-17. Zbl0755.47030
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.