Convergence in nonisotropic regions of harmonic functions in
Carme Cascante; Joaquin Ortega
Studia Mathematica (1999)
- Volume: 134, Issue: 3, page 269-298
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topCascante, Carme, and Ortega, Joaquin. "Convergence in nonisotropic regions of harmonic functions in $^n$." Studia Mathematica 134.3 (1999): 269-298. <http://eudml.org/doc/216638>.
@article{Cascante1999,
abstract = {We study the boundedness in $L^p(^n)$ of the projections onto spaces of functions with spectrum contained in horizontal strips. We obtain some results concerning convergence along nonisotropic regions of harmonic extensions of functions in $L^p(^n)$ with spectrum included in these horizontal strips.},
author = {Cascante, Carme, Ortega, Joaquin},
journal = {Studia Mathematica},
keywords = {harmonic and holomorphic functions; tangential convergence; boundary behaviour; admissible approach regions; theorems of Fatou type; bigraded spherical harmonics; Cauchy-Szegő projection; potentials; Sobolev spaces; Riesz-type kernels; complex interpolation; admissible convergence; admissible maximal functions; transverse curves; Hardy-Sobolev spaces; Riesz potentials; almost everywhere convergence},
language = {eng},
number = {3},
pages = {269-298},
title = {Convergence in nonisotropic regions of harmonic functions in $^n$},
url = {http://eudml.org/doc/216638},
volume = {134},
year = {1999},
}
TY - JOUR
AU - Cascante, Carme
AU - Ortega, Joaquin
TI - Convergence in nonisotropic regions of harmonic functions in $^n$
JO - Studia Mathematica
PY - 1999
VL - 134
IS - 3
SP - 269
EP - 298
AB - We study the boundedness in $L^p(^n)$ of the projections onto spaces of functions with spectrum contained in horizontal strips. We obtain some results concerning convergence along nonisotropic regions of harmonic extensions of functions in $L^p(^n)$ with spectrum included in these horizontal strips.
LA - eng
KW - harmonic and holomorphic functions; tangential convergence; boundary behaviour; admissible approach regions; theorems of Fatou type; bigraded spherical harmonics; Cauchy-Szegő projection; potentials; Sobolev spaces; Riesz-type kernels; complex interpolation; admissible convergence; admissible maximal functions; transverse curves; Hardy-Sobolev spaces; Riesz potentials; almost everywhere convergence
UR - http://eudml.org/doc/216638
ER -
References
top- [AhBr] P. Ahern and J. Bruna, Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of , Rev. Mat. Iberoamericana 4 (1988), 123-153. Zbl0685.42008
- [Al] A. B. Aleksandrov, Several Complex Variables II, Encyclopaedia Math. Sci. 8, G. M. Khenkin and A. G. Vitushkin (eds.), Springer, 1991.
- [BeLo] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, 1976. Zbl0344.46071
- [BoCl] A. Bonami et J.-L. Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223-263.
- [BrCa] J. Bruna and C. Cascante, Restriction to transverse curves of some spaces of functions in the unit ball, Michigan Math. J. 36 (1989), 387-401. Zbl0692.46018
- [BrOr] J. Bruna and J. M. Ortega, Closed finitely generated ideals in algebras of holomorphic functions and smooth to the boundary in strictly pseudoconvex domains, Math. Ann. 268 (1984), 137-157. Zbl0533.32002
- [CaOr] C. Cascante and J. M. Ortega, A characterisation of tangential exceptional sets for , α p=n, Proc. Roy. Soc. Edinburgh 126 (1996), 625-641. Zbl0881.32003
- [Ch] E. M. Chirka, The Lindelöf and Fatou theorems in , Mat. Sb. 92 (1973), 622-644 (in Russian).
- [Do] E. Doubtsov, thesis, Université Bordeaux I, 1995.
- [GaRu] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, 1985.
- [Ge] D. Geller, Some results in theory for the Heisenberg group, Duke Math. J. 47 (1980), 365-390.
- [Kr1] V. G. Krotov, Estimates for maximal operators connected with boundary behavior and their applications, Trudy Mat. Inst. Steklov. 190 (1989), 117-138 (in Russian); English transl.: Proc. Steklov Inst. Math. 1 (1992), 123-144.
- [Kr2] V. G. Krotov, A sharp estimate of the boundary behavior of functions in the Hardy-Sobolev classes in the critical case α p=n, Dokl. Akad. Nauk SSSR 319 (1991), 42-45 (in Russian); English transl.: Soviet Math. Dokl. 44 (1992), 36-39.
- [Li] E. Lindelöf, Sur un principe générale de l'analyse et ses applications à la théorie de la représentation conforme, Acta Soc. Sci. Fenn. 46 (1915), 1-35.
- [NaRoStWa] A. Nagel, J. P. Rosay, E. M. Stein and S. Wainger, Estimates for the Bergman and Szegő kernels in , Ann. of Math. 129 (1989), 113-149. Zbl0667.32016
- [NaRu] A. Nagel and W. Rudin, Local boundary behavior of bounded holomorphic functions, Canad. J. Math. 30 (1978), 583-592. Zbl0427.32006
- [NaRuSh] A. Nagel, W. Rudin and J. H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math. 116 (1982), 331-360. Zbl0531.31007
- [NaWa] A. Nagel and S. Wainger, Limits of bounded holomorphic functions along curves, in: Recent Developments in Several Complex Variables, J. E. Fornaess (ed.), Princeton Univ. Press, 1981, 327-344.
- [Ru] W. Rudin, Function Theory in the Unit Ball of , Springer, 1980.
- [St] J. D. Stafney, The spectrum of an operator on an interpolation space, Trans. Amer. Math. Soc. 144 (1969), 333-349. Zbl0225.46034
- [Su] J. Sueiro, Tangential boundary limits and exceptional sets for holomorphic functions in Dirichlet-type spaces, Math. Ann. 286 (1990), 661-678. Zbl0664.32003
- [TrEr] F. G. Tricomi and A. Erdélyi, The asymptotic expansion of a ratio of gamma functions, Pacific J. Math. 1 (1951), 133-142. Zbl0043.29103
- [Zy] A. Zygmund, On a theorem of Littlewood, Summa Brasil. Math. 2 (1949), 1-7.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.