Interpolation of the measure of non-compactness by the real method

Fernando Cobos; Pedro Fernández-Martínez; Antón Martínez

Studia Mathematica (1999)

  • Volume: 135, Issue: 1, page 25-38
  • ISSN: 0039-3223

Abstract

top
We investigate the behaviour of the measure of non-compactness of an operator under real interpolation. Our results refer to general Banach couples. An application to the essential spectral radius of interpolated operators is also given.

How to cite

top

Cobos, Fernando, Fernández-Martínez, Pedro, and Martínez, Antón. "Interpolation of the measure of non-compactness by the real method." Studia Mathematica 135.1 (1999): 25-38. <http://eudml.org/doc/216641>.

@article{Cobos1999,
abstract = {We investigate the behaviour of the measure of non-compactness of an operator under real interpolation. Our results refer to general Banach couples. An application to the essential spectral radius of interpolated operators is also given.},
author = {Cobos, Fernando, Fernández-Martínez, Pedro, Martínez, Antón},
journal = {Studia Mathematica},
keywords = {measure of non-compactness; real interpolation},
language = {eng},
number = {1},
pages = {25-38},
title = {Interpolation of the measure of non-compactness by the real method},
url = {http://eudml.org/doc/216641},
volume = {135},
year = {1999},
}

TY - JOUR
AU - Cobos, Fernando
AU - Fernández-Martínez, Pedro
AU - Martínez, Antón
TI - Interpolation of the measure of non-compactness by the real method
JO - Studia Mathematica
PY - 1999
VL - 135
IS - 1
SP - 25
EP - 38
AB - We investigate the behaviour of the measure of non-compactness of an operator under real interpolation. Our results refer to general Banach couples. An application to the essential spectral radius of interpolated operators is also given.
LA - eng
KW - measure of non-compactness; real interpolation
UR - http://eudml.org/doc/216641
ER -

References

top
  1. [1] E. Albrecht, Spectral interpolation, in: Oper. Theory Adv. Appl. 14, Birkhäuser, Basel, 1984. 
  2. [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976. Zbl0344.46071
  3. [3] B. Carl and I. Stephani, Entropy, Compactness and the Approximation of Operators, Cambridge Univ. Press, Cambridge, 1990. 
  4. [4] F. Cobos, D. E. Edmunds and A. J. B. Potter, Real interpolation and compact linear operators, J. Funct. Anal. 88 (1990), 351-365. Zbl0704.46049
  5. [5] F. Cobos, T. Kühn and T. Schonbek, One-sided compactness results for Aronszajn-Gagliardo functors, ibid. 106 (1992), 274-313. Zbl0787.46061
  6. [6] F. Cobos and J. Peetre, Interpolation of compactness using Aronszajn-Gagliardo functors, Israel J. Math. 68 (1989), 220-240. Zbl0716.46054
  7. [7] F. Cobos and J. Peetre, Interpolation of compact operators: The multidimensional case, Proc. London Math. Soc. 63 (1991), 371-400. Zbl0702.46047
  8. [8] F. Cobos and L. E. Persson, Real interpolation of compact operators between quasi-Banach spaces, Math. Scand. 82 (1998), 138-160. Zbl0921.46084
  9. [9] M. Cwikel, Real and complex interpolation and extrapolation of compact operators, Duke Math. J. 65 (1992), 333-343. Zbl0787.46062
  10. [10] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987. Zbl0628.47017
  11. [11] M. A. Krasnosel'skiĭ, On a theorem of M. Riesz, Soviet Math. Dokl. 1 (1960), 229-231. 
  12. [12] M. A. Krasnosel'skiĭ, P. P. Zabreĭko, E. I. Pustyl'nik and P. E. Sobolevskiĭ, Integral Operators in Spaces of Summable Functions, Noordhoff, Leiden, 1976. 
  13. [13] R. D. Nussbaum, The radius of the essential spectrum, Duke Math. J. 37 (1970), 473-479. Zbl0216.41602
  14. [14] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980. 
  15. [15] M. F. Teixeira and D. E. Edmunds, Interpolation theory and measures of non-compactness, Math. Nachr. 104 (1981), 129-135. Zbl0492.46062
  16. [16] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. Zbl0387.46033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.