The Lévy continuity theorem for nuclear groups
Studia Mathematica (1999)
- Volume: 136, Issue: 2, page 183-196
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [A] L. Außenhofer, Contributions to the duality theory of abelian topological groups and to the theory of nuclear groups, Ph.D. thesis, Tübingen University, 1998 (to appear in Dissertationes Math.). Zbl0905.22001
- [B1] W. Banaszczyk, Additive Subgroups of Topological Vector Spaces, Lecture Notes in Math. 1466, Springer, Berlin, 1991.
- [B2] W. Banaszczyk, Inequalities for convex bodies and polar reciprocal lattices in , Discrete Comput. Geom. 13 (1995), 217-231. Zbl0824.52011
- [B3] W. Banaszczyk, The Minlos lemma for positive-definite functions on additive subgroups of , Studia Math. 126 (1997), 13-25. Zbl0894.43004
- [BT] W. Banaszczyk and V. Tarieladze, The Lévy continuity theorem and related questions for nuclear groups, in preparation.
- [Bo] P. Boulicaut, Convergence cylindrique et convergence étroite d'une suite de probabilités de Radon, Z. Wahrsch. Verw. Gebiete 28 (1973), 43-52. Zbl0276.60003
- [G] J. Galindo, Structure and analysis on nuclear groups, preprint, 1997.
- [H] J. Hejcman, Boundedness in uniform spaces and topological groups, Czechoslovak Math. J. 9 (1959), 544-562. Zbl0132.18202
- [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. II, Springer, Berlin, 1970.
- [M] A. Mądrecki, Minlos' theorem in non-Archimedean locally convex spaces, Comment. Math. Prace Mat. 30 (1990), 101-111. Zbl0754.43002
- [VTCh] N. N. Vakhaniya, V. I. Tarieladze and S. A. Chobanyan, Probability Distributions on Banach Spaces, D. Reidel, Dordrecht, 1987.
- [Y] Y. Yang, On a generalization of Minlos theorem, Fudan Xuebao 20 (1981), 31-37 (in Chinese). Zbl0565.28011