Geometry of oblique projections
E. Andruchow; Gustavo Corach; D. Stojanoff
Studia Mathematica (1999)
- Volume: 137, Issue: 1, page 61-79
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topAndruchow, E., Corach, Gustavo, and Stojanoff, D.. "Geometry of oblique projections." Studia Mathematica 137.1 (1999): 61-79. <http://eudml.org/doc/216675>.
@article{Andruchow1999,
abstract = {Let A be a unital C*-algebra. Denote by P the space of selfadjoint projections of A. We study the relationship between P and the spaces of projections $P_a$ determined by the different involutions $#_a$ induced by positive invertible elements a ∈ A. The maps $φ:P → P_a$ sending p to the unique $q ∈ P_a$ with the same range as p and $Ω_a : P_a → P_a$ sending q to the unitary part of the polar decomposition of the symmetry 2q-1 are shown to be diffeomorphisms. We characterize the pairs of idempotents q,r ∈ A with ||q-r|| < 1 such that there exists a positive element a ∈ A satisfying $q,r ∈ P_a$. In this case q and r can be joined by a unique short geodesic along the space of idempotents Q of A.},
author = {Andruchow, E., Corach, Gustavo, Stojanoff, D.},
journal = {Studia Mathematica},
keywords = {-algebra; oblique projections; idempotents; geodesic},
language = {eng},
number = {1},
pages = {61-79},
title = {Geometry of oblique projections},
url = {http://eudml.org/doc/216675},
volume = {137},
year = {1999},
}
TY - JOUR
AU - Andruchow, E.
AU - Corach, Gustavo
AU - Stojanoff, D.
TI - Geometry of oblique projections
JO - Studia Mathematica
PY - 1999
VL - 137
IS - 1
SP - 61
EP - 79
AB - Let A be a unital C*-algebra. Denote by P the space of selfadjoint projections of A. We study the relationship between P and the spaces of projections $P_a$ determined by the different involutions $#_a$ induced by positive invertible elements a ∈ A. The maps $φ:P → P_a$ sending p to the unique $q ∈ P_a$ with the same range as p and $Ω_a : P_a → P_a$ sending q to the unitary part of the polar decomposition of the symmetry 2q-1 are shown to be diffeomorphisms. We characterize the pairs of idempotents q,r ∈ A with ||q-r|| < 1 such that there exists a positive element a ∈ A satisfying $q,r ∈ P_a$. In this case q and r can be joined by a unique short geodesic along the space of idempotents Q of A.
LA - eng
KW - -algebra; oblique projections; idempotents; geodesic
UR - http://eudml.org/doc/216675
ER -
References
top- [1] Afriat S. N., Orthogonal and oblique projections and the characteristics of pairs of vector spaces, Proc. Cambridge Philos. Soc. 53 (1957), 800-816.
- [2] Andruchow E., Corach G. and Stojanoff D., Projective spaces for C*-algebras, Integral Equations Operator Theory, to appear. Zbl0962.46040
- [3] Brown L. G., The rectifiable metric on the set of closed subspaces of Hilbert space, Trans. Amer. Math. Soc. 337 (1993), 279-289. Zbl0822.46022
- [4] Buckholtz D., Inverting the difference of Hilbert space projections, Amer. Math. Monthly 104 (1997), 60-61. Zbl0901.46019
- [5] Coifman R. R., and Murray M. A. M., Uniform analyticity of orthogonal projections, Trans. Amer. Math. Soc. 312 (1989), 779-817. Zbl0675.42001
- [6] Corach G., Operator inequalities, geodesics and interpolation, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 101-115. Zbl0820.47019
- [7] Corach G., Porta H. and Recht L., Differential geometry of systems of projections in Banach algebras, Pacific J. Math. 140 (1990), 209-228. Zbl0734.46031
- [8] Corach G., Porta H. and Recht L., Differential geometry of systems of projections in Banach algebras, The geometry of spaces of projections in C*-algebras, Adv. Math. 101 (1993), 59-77. Zbl0799.46067
- [9] Corach G., Porta H. and Recht L., The geometry of spaces of selfadjoint invertible elements of a C*-algebra, Integral Equations Operator Theory 16 (1993), 771-794. Zbl0726.46028
- [10] Dieudonné J., Quasi-hermitian operators, in: Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Pergamon Press, Oxford, 1961, 115-122.
- [11] Gerisch W., Idempotents, their Hermitian components, and subspaces in position p of a Hilbert space, Math. Nachr. 115 (1984), 283-303. Zbl0575.47002
- [12] Householder A. S., and Carpenter J. A., The singular values of involutory and of idempotent matrices, Numer. Math. 5 (1963), 234-237. Zbl0118.01705
- [13] Kerzman N., and Stein E. M., The Szegő kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J. 45 (1978), 197-224. Zbl0387.32009
- [14] Kerzman N., and Stein E. M., The Szegő kernel in terms of Cauchy-Fantappiè kernels, The Cauchy kernel, the Szegő kernel, and the Riemann mapping function, Math. Ann. 236 (1978), 85-93. Zbl0419.30012
- [15] Kovarik Z. V., Similarity and interpolation between projectors, Acta Sci. Math. (Szeged) 39 (1977), 341-351. Zbl0392.47008
- [16] Lax P. D., Symmetrizable linear transformations, Comm. Pure Appl. Math. 7 (1954), 633-647. Zbl0057.34402
- [17] Mizel V. J., and Rao M. M., Nonsymmetric projections in Hilbert space, Pacific J. Math. 12 (1962), 343-357. Zbl0111.30703
- [18] Odzijewicz A., On reproducing kernels and quantization of states, Comm. Math. Phys. 114 (1988), 577-597. Zbl0645.53044
- [29] Odzijewicz A., On reproducing kernels and quantization of states, Coherent states and geometric quantization, ibid. 150 (1992), 385-413. Zbl0768.58022
- [20] Pasternak-Winiarski Z., On the dependence of the orthogonal projector on deformations of the scalar product, Studia Math. 128 (1998), 1-17. Zbl0910.46013
- [21] Pasternak-Winiarski Z., On the dependence of the orthogonal projector on deformations of the scalar product, On the dependence of the reproducing kernel on the weight of integration, J. Funct. Anal. 94 (1990), 110-134. Zbl0739.46010
- [22] Pasternak-Winiarski Z., Bergman spaces and kernels for holomorphic vector bundles, Demonstratio Math. 30 (1997), 199-214. Zbl0877.32003
- [23] Phillips N. C., The rectifiable metric on the space of projections in a C*-algebra, Internat. J. Math. 3 (1992), 679-698. Zbl0778.46039
- [24] Porta H., and Recht L., Spaces of projections in Banach algebras, Acta Cient. Venezolana 39 (1987), 408-426.
- [25] Porta H., and Recht L., Spaces of projections in Banach algebras, Minimality of geodesics in Grassmann manifolds, Proc. Amer. Math. Soc. 100 (1987), 464-466. Zbl0656.46042
- [26] Porta H., and Recht L., Spaces of projections in Banach algebras, Variational and convexity properties of families of involutions, Integral Equations Operator Theory 21 (1995), 243-253. Zbl0831.46062
- [27] Pták V., Extremal operators and oblique projections, Časopis Pěst. Mat. 110 (1985), 343-350. Zbl0611.47022
- [28] Strătilă Ş., Modular Theory in Operator Algebras, Editura Academiei, Bucharest, 1981. Zbl0504.46043
- [29] Zemánek J., Idempotents in Banach algebras, Bull. London Math. Soc. 11 (1979), 177-183. Zbl0429.46029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.