An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces

M. Poppenberg

Studia Mathematica (1999)

  • Volume: 137, Issue: 2, page 101-121
  • ISSN: 0039-3223

Abstract

top
A general existence and uniqueness result of Picard-Lindelöf type is proved for ordinary differential equations in Fréchet spaces as an application of a generalized Nash-Moser implicit function theorem. Many examples show that the assumptions of the main result are natural. Applications are given for the Fréchet spaces C ( K ) , S ( N ) , B ( R N ) , D L 1 ( N ) , for Köthe sequence spaces, and for the general class of subbinomic Fréchet algebras.

How to cite

top

Poppenberg, M.. "An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces." Studia Mathematica 137.2 (1999): 101-121. <http://eudml.org/doc/216678>.

@article{Poppenberg1999,
abstract = {A general existence and uniqueness result of Picard-Lindelöf type is proved for ordinary differential equations in Fréchet spaces as an application of a generalized Nash-Moser implicit function theorem. Many examples show that the assumptions of the main result are natural. Applications are given for the Fréchet spaces $C^∞(K)$, $S(ℝ^N)$, $B(ℝ R^N)$, $D_\{L_1\}(ℝ^N)$, for Köthe sequence spaces, and for the general class of subbinomic Fréchet algebras.},
author = {Poppenberg, M.},
journal = {Studia Mathematica},
keywords = {existence; uniqueness; Nash-Moser implicit function theorem; subbinomic Fréchet algebras},
language = {eng},
number = {2},
pages = {101-121},
title = {An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces},
url = {http://eudml.org/doc/216678},
volume = {137},
year = {1999},
}

TY - JOUR
AU - Poppenberg, M.
TI - An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces
JO - Studia Mathematica
PY - 1999
VL - 137
IS - 2
SP - 101
EP - 121
AB - A general existence and uniqueness result of Picard-Lindelöf type is proved for ordinary differential equations in Fréchet spaces as an application of a generalized Nash-Moser implicit function theorem. Many examples show that the assumptions of the main result are natural. Applications are given for the Fréchet spaces $C^∞(K)$, $S(ℝ^N)$, $B(ℝ R^N)$, $D_{L_1}(ℝ^N)$, for Köthe sequence spaces, and for the general class of subbinomic Fréchet algebras.
LA - eng
KW - existence; uniqueness; Nash-Moser implicit function theorem; subbinomic Fréchet algebras
UR - http://eudml.org/doc/216678
ER -

References

top
  1. [1] E. Bierstone, Extension of Whitney fields from subanalytic sets, Invent. Math. 46 (1978), 277-300. Zbl0404.58010
  2. [2] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud. 170, North-Holland, 1993. Zbl0774.46018
  3. [3] E. Dubinsky, Differential equations and differential calculus in Montel spaces, Trans. Amer. Math. Soc. 110 (1964), 1-21. Zbl0119.11802
  4. [4] A. N. Godunov, On linear differential equations in locally convex spaces, Vest. Moskov. Univ. Mat. 29 (1974), no. 5, 31-39. Zbl0305.34088
  5. [5] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222. Zbl0499.58003
  6. [6] G. Herzog, Über Gewöhnliche Differentialgleichungen in Frécheträumen,Ph.D. Thesis, Karlsruhe, 1992. 
  7. [7] L. Hörmander, Implicit Function Theorems, Lectures at Stanford University, Summer 1977. 
  8. [8] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. Zbl0466.46001
  9. [9] J. Jung, Zum Satz der Inversen Funktionen in Frécheträumen, Diplomarbeit, Mainz, 1992. 
  10. [10] H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations, Comm. Partial Differential Equations 24 (1999), 1399-1418. Zbl0935.35153
  11. [11] R. Lemmert, On ordinary differential equations in locally convex spaces, Nonlinear Anal. 10 (1986), 1385-1390. Zbl0612.34056
  12. [12] S. G. Lobanov and O. G. Smolyanov, Ordinary differential equations in locally convex spaces, Russian Math. Surveys 49 (1994), 97-175. Zbl0834.34076
  13. [13] S. Łojasiewicz Jr. and E. Zehnder, An inverse function theorem in Fréchet-spaces, J. Funct. Anal. 33 (1979), 165-174. Zbl0431.46032
  14. [14] J. Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1824-1831. Zbl0104.30503
  15. [15] J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63. Zbl0070.38603
  16. [16] M. Poppenberg, Characterization of the subspaces of(s) in the tame category, Arch. Math. (Basel) 54 (1990), 274-283. Zbl0663.46003
  17. [17] M. Poppenberg, Characterization of the quotient spaces of(s) in the tame category, Math. Nachr. 150 (1991), 127-141. Zbl0778.46012
  18. [18] M. Poppenberg, Simultaneous smoothing and interpolation with respect to E. Borel's Theorem, Arch. Math. (Basel) 61 (1993), 150-159. Zbl0781.46002
  19. [19] M. Poppenberg, A smoothing property for Fréchet spaces, J. Funct. Anal. 141 (1996), 193-210. 
  20. [20] M. Poppenberg, Tame sequence space representations of spaces of C -functions, Results Math. 29 (1996), 317-334. 
  21. [21] M. Poppenberg, An inverse function theorem for Fréchet spaces satisfying a smoothing property and(DN), Math. Nachr. 206 (1999), 123-145. Zbl0942.58017
  22. [22] M. Poppenberg, Smooth solutions for a class of nonlinear parabolic evolution equations, Proc. London Math. Soc., to appear. 
  23. [23] M. Poppenberg and D. Vogt, A tame splitting theorem for exact sequences of Fréchet spaces, Math. Z. 219 (1995), 141-161. Zbl0823.46002
  24. [24] J. Robbin, On the existence theorem for differential equations, Proc. Amer. Math. Soc. 16 (1969), 1005-1006. Zbl0169.11604
  25. [25] T M. Tidten, Fortsetzungen von C -Funktionen, welche auf einer abgeschlossenen Menge in n definiert sind, Manuscripta Math. 27 (1979), 291-312. 
  26. [26] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117. Zbl0337.46015
  27. [27] D. Vogt, Subspaces and quotient spaces of(s), in: Functional Analysis: Surveys and Recent Results, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland Math. Stud. 27, North-Holland, 1977, 167-187. 
  28. [28] D. Vogt, Power series space representations of nuclear Fréchet spaces, Trans. Amer. Math. Soc. 319 (1990), 191-208. Zbl0724.46007
  29. [29] D. Vogt, On two classes of (F)-spaces, Arch. Math. (Basel) 45 (1985), 255-266. Zbl0621.46001
  30. [30] D. Vogt and M. J. Wagner, Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math. 67 (1980), 225-240. Zbl0464.46010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.