An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces
Studia Mathematica (1999)
- Volume: 137, Issue: 2, page 101-121
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topPoppenberg, M.. "An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces." Studia Mathematica 137.2 (1999): 101-121. <http://eudml.org/doc/216678>.
@article{Poppenberg1999,
abstract = {A general existence and uniqueness result of Picard-Lindelöf type is proved for ordinary differential equations in Fréchet spaces as an application of a generalized Nash-Moser implicit function theorem. Many examples show that the assumptions of the main result are natural. Applications are given for the Fréchet spaces $C^∞(K)$, $S(ℝ^N)$, $B(ℝ R^N)$, $D_\{L_1\}(ℝ^N)$, for Köthe sequence spaces, and for the general class of subbinomic Fréchet algebras.},
author = {Poppenberg, M.},
journal = {Studia Mathematica},
keywords = {existence; uniqueness; Nash-Moser implicit function theorem; subbinomic Fréchet algebras},
language = {eng},
number = {2},
pages = {101-121},
title = {An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces},
url = {http://eudml.org/doc/216678},
volume = {137},
year = {1999},
}
TY - JOUR
AU - Poppenberg, M.
TI - An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces
JO - Studia Mathematica
PY - 1999
VL - 137
IS - 2
SP - 101
EP - 121
AB - A general existence and uniqueness result of Picard-Lindelöf type is proved for ordinary differential equations in Fréchet spaces as an application of a generalized Nash-Moser implicit function theorem. Many examples show that the assumptions of the main result are natural. Applications are given for the Fréchet spaces $C^∞(K)$, $S(ℝ^N)$, $B(ℝ R^N)$, $D_{L_1}(ℝ^N)$, for Köthe sequence spaces, and for the general class of subbinomic Fréchet algebras.
LA - eng
KW - existence; uniqueness; Nash-Moser implicit function theorem; subbinomic Fréchet algebras
UR - http://eudml.org/doc/216678
ER -
References
top- [1] E. Bierstone, Extension of Whitney fields from subanalytic sets, Invent. Math. 46 (1978), 277-300. Zbl0404.58010
- [2] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud. 170, North-Holland, 1993. Zbl0774.46018
- [3] E. Dubinsky, Differential equations and differential calculus in Montel spaces, Trans. Amer. Math. Soc. 110 (1964), 1-21. Zbl0119.11802
- [4] A. N. Godunov, On linear differential equations in locally convex spaces, Vest. Moskov. Univ. Mat. 29 (1974), no. 5, 31-39. Zbl0305.34088
- [5] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222. Zbl0499.58003
- [6] G. Herzog, Über Gewöhnliche Differentialgleichungen in Frécheträumen,Ph.D. Thesis, Karlsruhe, 1992.
- [7] L. Hörmander, Implicit Function Theorems, Lectures at Stanford University, Summer 1977.
- [8] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. Zbl0466.46001
- [9] J. Jung, Zum Satz der Inversen Funktionen in Frécheträumen, Diplomarbeit, Mainz, 1992.
- [10] H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations, Comm. Partial Differential Equations 24 (1999), 1399-1418. Zbl0935.35153
- [11] R. Lemmert, On ordinary differential equations in locally convex spaces, Nonlinear Anal. 10 (1986), 1385-1390. Zbl0612.34056
- [12] S. G. Lobanov and O. G. Smolyanov, Ordinary differential equations in locally convex spaces, Russian Math. Surveys 49 (1994), 97-175. Zbl0834.34076
- [13] S. Łojasiewicz Jr. and E. Zehnder, An inverse function theorem in Fréchet-spaces, J. Funct. Anal. 33 (1979), 165-174. Zbl0431.46032
- [14] J. Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1824-1831. Zbl0104.30503
- [15] J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63. Zbl0070.38603
- [16] M. Poppenberg, Characterization of the subspaces of(s) in the tame category, Arch. Math. (Basel) 54 (1990), 274-283. Zbl0663.46003
- [17] M. Poppenberg, Characterization of the quotient spaces of(s) in the tame category, Math. Nachr. 150 (1991), 127-141. Zbl0778.46012
- [18] M. Poppenberg, Simultaneous smoothing and interpolation with respect to E. Borel's Theorem, Arch. Math. (Basel) 61 (1993), 150-159. Zbl0781.46002
- [19] M. Poppenberg, A smoothing property for Fréchet spaces, J. Funct. Anal. 141 (1996), 193-210.
- [20] M. Poppenberg, Tame sequence space representations of spaces of -functions, Results Math. 29 (1996), 317-334.
- [21] M. Poppenberg, An inverse function theorem for Fréchet spaces satisfying a smoothing property and(DN), Math. Nachr. 206 (1999), 123-145. Zbl0942.58017
- [22] M. Poppenberg, Smooth solutions for a class of nonlinear parabolic evolution equations, Proc. London Math. Soc., to appear.
- [23] M. Poppenberg and D. Vogt, A tame splitting theorem for exact sequences of Fréchet spaces, Math. Z. 219 (1995), 141-161. Zbl0823.46002
- [24] J. Robbin, On the existence theorem for differential equations, Proc. Amer. Math. Soc. 16 (1969), 1005-1006. Zbl0169.11604
- [25] T M. Tidten, Fortsetzungen von -Funktionen, welche auf einer abgeschlossenen Menge in definiert sind, Manuscripta Math. 27 (1979), 291-312.
- [26] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117. Zbl0337.46015
- [27] D. Vogt, Subspaces and quotient spaces of(s), in: Functional Analysis: Surveys and Recent Results, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland Math. Stud. 27, North-Holland, 1977, 167-187.
- [28] D. Vogt, Power series space representations of nuclear Fréchet spaces, Trans. Amer. Math. Soc. 319 (1990), 191-208. Zbl0724.46007
- [29] D. Vogt, On two classes of (F)-spaces, Arch. Math. (Basel) 45 (1985), 255-266. Zbl0621.46001
- [30] D. Vogt and M. J. Wagner, Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math. 67 (1980), 225-240. Zbl0464.46010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.