functional calculus in real interpolation spaces
Studia Mathematica (1999)
- Volume: 137, Issue: 2, page 161-167
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] K. N. Boyadzhiev and R. J. deLaubenfels, functional calculus for perturbations of generators of holomorphic semigroups, Houston J. Math. 17 (1991), 131-147. Zbl0738.47018
- [2] K. N. Boyadzhiev and R. J. deLaubenfels, Semigroups and resolvents of bounded variation, imaginary powers and functional calculus, Semigroup Forum 45 (1992), 372-384. Zbl0779.47036
- [3] M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded functional calculus, J. Austral. Math. Soc. Ser. A 60 (1996), 51-89. Zbl0853.47010
- [4] G. Dore and A. Venni, Some results about complex powers of closed operators, J. Math. Anal. Appl. 149 (1990), 124-136. Zbl0712.47003
- [5] R. deLaubenfels, A holomorphic functional calculus for unbounded operators, Houston J. Math. 13 (1987), 545-548. Zbl0653.47008
- [6] R. deLaubenfels, Unbounded holomorphic functional calculus and abstract Cauchy problems for operators with polynomially bounded resolvents, J. Funct. Anal. 114 (1993), 348-394. Zbl0785.47018
- [7] A. McIntosh, Operators which have an functional calculus, in: Miniconference on Operator Theory and Partial Differential Equations (Macquarie University, Ryde, N.S.W., September 8-10, 1986), B. Jefferies, A. McIntosh and W. Ricker (eds.), Proc. Centre Math. Anal. Austral. Nat. Univ. 14, Austral. Nat. Univ., Canberra, 1986, 210-231.
- [8] A. McIntosh and A. Yagi, Operators of type ω without a bounded functional calculus, in: Miniconference on Operators in Analysis (Macquarie University, Sydney, N.S.W., September 25-27, 1989), I. Doust, B. Jefferies, C. Li and A. McIntosh (eds.), Proc. Centre Math. Anal. Austral. Nat. Univ. 24, Austral. Nat. Univ., Canberra, 1989, 159-172.
- [9] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.